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A Component-Based Diffusion Model With
Structural Diversity for Social Networks
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Abstract—Diffusion on social networks refers to the process
where opinions are spread via the connected nodes. Given a set
of observed information cascades, one can infer the underlying
diffusion process for social network analysis. The independent
cascade model (IC model) is a widely adopted diffusion model
where a node is assumed to be activated independently by any
one of its neighbors. In reality, how a node will be activated also
depends on how its neighbors are connected and activated. For
instance, the opinions from the neighbors of the same social group
are often similar and thus redundant. In this paper, we extend
the IC model by considering that: 1) the information coming
from the connected neighbors are similar and 2) the underlying
redundancy can be modeled using a dynamic structural diver-
sity measure of the neighbors. Our proposed model assumes each
node to be activated independently by different communities (or
components) of its parent nodes, each weighted by its effective
size. An expectation maximization algorithm is derived to infer
the model parameters. We compare the performance of the pro-
posed model with the basic IC model and its variants using both
synthetic data sets and a real-world data set containing news
stories and Web blogs. Our empirical results show that incorpo-
rating the community structure of neighbors and the structural
diversity measure into the diffusion model significantly improves
the accuracy of the model, at the expense of only a reasonable
increase in run-time.

Index Terms—Diffusion networks, independent cascade model,
social networks, structural diversity.

I. INTRODUCTION

PEOPLE are often influenced by their friends to form
opinions and views, resulting in information cas-

cades. In social networks, the process is termed diffu-
sion where information is spread via the connected nodes
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(with nodes modeling users and edges modeling their rela-
tionships). Given a set of observed information cascades,
the underlying diffusion process can be inferred [1], [2]
for different applications, including influence maximiza-
tion [3]–[5], authoritative user identification [6], personalized
recommendation [7], [8], etc.

The independent cascade (IC) model [1] and the linear
threshold (LT) model [2] are two commonly used diffusion
models for social networks. The IC model [1] assumes that a
node can be activated independently by any one of its neigh-
bors, while the LT model [2] assumes that whether a node will
be activated depends on the aggregation of its neighbors’ acti-
vations. In this paper, we extend the IC model by considering
the structural diversity of node neighborhood to better model
the diffusion processes in social networks. The basic IC model,
since it was first proposed, has been extended in various ways,
e.g., assuming node influence to decay over time as most peo-
ple are more interested in recent news [9], [10], allowing the
diffusion rate to be dynamic [11], [12], among others. To the
best of our knowledge, no diffusion models have been pro-
posed to take into account the effect of the structural diversity
of neighbors on node activation, which is what we argue to
be important.

Diffusion models are defined with the notion of neigh-
borhood. The neighbors with direct connections (also called
ties) to a node could exhibit different forms of influence
depending on their connectivity in the social network. There
have been studies on the effect of different local ties on the
overall network properties. For instance, ties with different
strength characterized by the amount of shared time, emo-
tional intensity and so on have been found playing unique
roles in a network [13]. The importance of weak ties serv-
ing as “local bridges” to introduce novel information in social
networks has long been understood [13]. Related perspectives
have recently been explored for online communication and
social media analysis [14]–[16]. Onnela et al. [14] studied
the roles of strong and weak ties in mobile communication
networks and illustrated that random removal of weak ties
could lead to the networks falling apart, no longer supporting
the communication. Online social ties across heterogeneous
networks have been studied in [16]. Also, the structure of
neighbors has been considered as the resources they hold (also
known as social capital) in [17]. Information provided by each
neighbor when they communicate through their connectivity
carries redundancy. In [15], it has been demonstrated that the
number of connected components of the neighbors correlates
well with the probability for a person joining social coalition.
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That is, it is not the number of friends influencing you that
matters but the number of loosely coupled “groups” (or called
nonredundant contacts in [17] and components in this paper).

We here propose a novel component-based IC model that
considers the neighborhood structure of each node for mod-
eling information redundancy during the diffusion process. In
particular, a node will be activated independently by groups of
parent nodes which are densely connected (called component
in the sequel) instead of individual parent nodes. Also, we
make use of different structural diversity measures for quanti-
fying the redundancy of each component and then derive the
corresponding model learning algorithm to infer the diffusion
probabilities based on a set of observed cascades. The effec-
tiveness of the proposed IC model is evaluated using both
synthetic and real data sets. Note that the focus of this paper
is to study the effect of incorporating neighbors’ structural
diversity into the diffusion network and the network structure
is assumed to be known and static. The results of this paper
can also be extended to the cases where the network struc-
ture is unknown [18] and/or contains dynamic ties [19], [20].
Also, we consider only static transmission rates and activations
happening at discrete time steps.

The contributions of this paper are as follows.
1) We model information redundancy using the structural

diversity of neighbors and propose a novel component-
based diffusion model. To the best of our knowledge, we
are the first group demonstrating the importance of con-
sidering the structural diversity of neighbors in diffusion
modeling.

2) We adopt the notion of effective size in social science
and propose a measure called dynamic effective size
to allow the diffusion models to be more adaptive to
dynamic behaviors.

3) We derive an expectation maximization (EM) algorithm
for obtaining the ML estimates of the model parameters
based on the observed cascades with a detailed analysis
of its run-time.

The remainder of this paper is organized as follows.
Section II presents related work on diffusion modeling.
Detailed problem formulation and experimental results can be
found in Sections III and IV. Section V concludes this paper
and presents the future work.

II. RELATED WORK

There has been a rapid growth in research on social net-
work analysis [21], [22] over the past decade, and contagion
in particular. Simple contagion (e.g., the IC model [1]) con-
siders cases where only one source is sufficient for diffusion
while complex contagion (e.g., the LT model [2]) is related
to collective behaviors which require social affirmation from
multiple sources [23]. There also exist different variants of the
diffusion models in the literature. For instance, a node can be
influenced by a linear combination of neighbors’ influence,
which is a generalization of the linear approximation for the
IC model [6]. In [9] and [10], the influence of a parent node
is assumed to decay over time after its activation in an expo-
nential manner. Also, one can allow a node to be activated

multiple times as it is reasonable for a motivated user to post
several times on the same topic [24], [25]. In addition, a node
can consider not only the influence of activations happened one
time step before but also that of the earlier ones as a user could
be motivated by revisiting earlier posts [9], [10]. Furthermore,
one can allow the transmission rate to be dynamic in dif-
fusion modeling [11], [12]. Asynchronous time models can
allow the activations to occur in continuous time [26], [27].
Modeling the propagation of competing opinions [28], [29]
has also been studied. Also, diffusion processes can evolve
in time on temporal networks [20], [30].

This paper is also related to the study of social capital in
social science. The structure of social contacts/neighbors in a
network and the resources they each hold is generally defined
as social capital [17]. Lacking edges among neighbors results
in structural holes, which in turn benefit novel information.
Notions like effective size and constraint have been defined
as measures for structure holes in [17]. These form impor-
tant concepts for formulating information redundancy, to be
discussed in the next section.

III. COMPONENT-BASED DIFFUSION MODEL

In this section, we put forward a diffusion based model for
social networks with the consideration of the community struc-
ture of neighbors for each node. We regard the communities
of the parents of a node as its components. Within a com-
ponent, nodes are assumed to be frequently interacting and
thus carry redundant information. So, instead of considering
the independent influence of the neighboring nodes, we con-
sider the independent influence of the neighboring components
(as independent information sources [15], [17]). And for each
component, we model the effective number of nodes by its
effective size to further remove redundancy.

A. Preliminaries

We represent a given social network as a directed graph
G = (V, E) where V is the set of nodes and E is the set of
edges. Let e = (v, w) be an edge from node v to node w,
and f (v) and b(v) be the sets of child nodes and parent nodes
of node v, respectively, given as: f (v) = {w : (v, w) ∈ E}
and b(v) = {u : (u, v) ∈ E}. For each node w, we define
the connected components of its parent nodes as its parent
components B(w) = {Bi(w) : i = 1, . . . , Nc(w)} where Nc(w)

is the number of components for B(w). And reversely, for a
component c, we define the set of nodes having component c as
one of its parent components as F(c) = {w : c ∈ B(w)}. Here,
the parent components of node w are modeled as the detected
communities in b(w) using community detection algorithms
(see [31]).

With the assumption that the component structure of the par-
ents of each node is static, we define for each component-node
pair (c ∈ B(w), w) a component-based diffusion probabil-
ity τc,w with 0 ≤ τc,w ≤ 1. Also, we allow a node to
be activated multiple times. Some major notations defined
in this paper are summarized in Table I. Fig. 1 illustrates
a node w and its parents. The node w has a set of parent
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TABLE I
NOTATIONS

(a) (b)

Fig. 1. (a) Node-based versus (b) component-based diffusion.

nodes b(w) = {v1, v2, v3, v4, v5, v6} [Fig. 1(a)]. The par-
ent nodes form two components, i.e., B(w) = {B1(w) =
{v1, v2, v3}, B2(w) = {v4, v5, v6}} [Fig. 1(b)]. By denoting
B1(w) as C1 and B2(w) as C2, the corresponding component-
based diffusion probabilities are denoted as τC1,w and τC2,w,
respectively.

B. Problem Formulation

Let Ds = {Ds(0), Ds(1) · · ·Ds(Ts)} be the sth observed
information cascade, where Ds(t) is the set of nodes activated
at time step t and Ts is the end time of cascade Ds. In our pro-
posed diffusion model, given the sth cascade and the current
time step t, whether a node w will be activated at the time
step t + 1 depends on whether its parent components B(w)

are active or not during the time interval [t−Ls(w, t), t]. Here
Ls(w, t) denote the time difference between the current time
t and the latest activation time of w up to t. And a parent
component is considered active during the interval if at least
one of its nodes is activated during the interval. This implies
that we are only interested in recent news and that the posts
prior to our previous posting have little influence on our future
posting behavior. We define Cs(w, t) ⊂ B(w) to be the set of
active parent components of w with respect to time step t in
the sth cascade.

The diffusion process of a particular cascade proceeds as
follows. Given the initial set of activated nodes in the sth cas-
cade (Ds(0)), the parent components of each node are checked
for being active or not as the time step proceeds. Based on
the diffusion probabilities {τc,w} with c ∈ Cs(w, t), some of
their child nodes {w} will be activated accordingly. The pro-
cess proceeds until there are no more nodes being activated
and thus the cascade stops. To infer the diffusion model, we
adopt the Bayesian framework and obtain the model parame-
ters by maximizing the likelihood of generating the observed
cascades {Ds} (to be discussed in Section III-C).

In this paper, we incorporate also the factors which can
affect the degree of influence of a component activation into
the diffusion model. We regard a parent component’s degree of
influence to be affected by: 1) the time at which the component
is activated and 2) the dynamics of the structural properties
of the activated nodes in the component. We define the two
factors as F(s)

a (c, w, t) and F(s)
b (c, w, t). In the following, we

first introduce the structural diversity factor F(s)
b (c, w, t), and

then the decay factor F(s)
a (c, w, t) which is defined based on

F(s)
b (c, w, t).
1) Structural Diversity Factor: We argue that a parent

component is more influential if the associated nodes are
sparsely connected, and thus less redundancy among them. In
social networks, news items posted by closely linked websites
are considered to carry redundant information. We formulate
F(s)

b (c, w, t) as the effective size, a well-known measure of
structure holes [17]. As explained by the theory of social cap-
ital, lacking edges among neighbors results in structural holes,
which benefit novel information [17].

To compute F(s)
b (c, w, t), we first build a weighted undi-

rected complete graph Gc(t) = (Nc(t), Ec(t)) for the set of
activated parent nodes Nc(t) of w in component c ∈ Cs(w, t)
before time step t + 1 where Ec(t) defines the set of pairs of
the activated nodes in component c. For each edge eij ∈ Ec(t),
we compute a weight hij to indicate the similarity of the node
pair. Even though the activated nodes are not connected at
a certain time, they may share information through common
friends, which is also known as structural equivalence [17].
For example, in Fig. 1, although v4 and v6 are not connected,
they could share information via v5. We use SimRank [32]1

that considers node connectivity to calculate the similarity
score associated to each node pair in component c. The score
will then be within [0, 1]. To achieve run-time efficiency,
we use the similarity scores obtained after the first itera-
tion, which is essentially equal to a normalized version of
co-citation [33]. Given {hij}, we further define the relative
similarity mjq ∈ [0, 1] as

mjq = hjq

maxk∈Nc(t) hjk
. (1)

To sum up the influence of the nodes in Nc(t) on its child
node w, we use once again SimRank to first compute the
similarity of node w and each node in Nc(t). We then define

1The use of SimRank is by no means optimal and alternatives can be
explored in future work.
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(a)

(c)(b) (d) (e) (f)

Fig. 2. (a)–(d) Calculation of the effective size. (e) Node activations. (f) Calculation of component activation time.

pwq ∈ [0, 1] as the portion of emphasis w will put on a parent
node q, given as

pwq = hwq + ε
∑

j∈Nc(t)

(
hwj + ε

) (2)

with an additive smoothing parameter ε (set to 1E-12 in our
experiments). Then, the effective size of Gc(t) is given as

F(s)
b (c, w, t) =

∑

j∈Nc(t)

⎛

⎝1−
∑

q∈Nc(t)\{j}
pwq mjq

⎞

⎠. (3)

Given the formulation, F(s)
b (c, w, t) takes values within

[1, |Nc(t)|]. In addition,
∑

q∈Nc(t)\{j} pwq mjq can be interpreted
as the redundancy for parent node j. Note that if maxk∈Nc(t) hjk

equals 0, indicating hjq equals 0 for all q, we assign mjq to 0
since there is no information shared with any node q to cause
redundancy.

It is interesting to note that if we compute the similarity
score by assigning the weight hij to 1 given there exists a
corresponding edge (eij or eji) in G and to 0 otherwise, (3)
can be rewritten as

F(s)
b (c, w, t) = |Nc(t)| − 2 |Ec(t)|

|Nc(t)| (4)

which is equivalent to the normalization of modularity
measure [34]. In the sequel, we refer to the use of (3) as adopt-
ing effective size, and (4) as adopting modularity. Meanwhile,
if we consider all the parent nodes in a component instead of
only the activated ones, F(s)

b (c, w, t) becomes a static measure,
whereas the aforementioned measures are all dynamic by defi-
nition. The effectiveness of different versions of the structural
diversity factor, namely dynamic effective size, static effec-
tive size, dynamic modularity, and static modularity will be
evaluated and discussed in Section IV.

Example 1: The similarity scores of the node pairs in com-
ponent C1 are listed in Fig. 2(a). At t = 1 [Fig. 2(b)],
only v1 is activated. The inner sum in (3) has no items
and thus F(s)

b (c, w, t) equals 1. At t = 2, v2 is activated
[Fig. 2(c)]. It is easy to see that mv1v2 = mv2v1 = 1 and
pv1w = pv2w = (1/2). Then, F(s)

b (c, w, t) = (1− (1/2))+ (1−
(1/2)) = 1. When v3 is further activated at t = 3 [Fig. 2(d)],
mv1v2 = mv2v1 = (1/2), and for other pairs the values are 1.

pv1w = pv2w = pv3w = (1/3). Thus, F(s)
b (c, w, t) = (1−(1/3)×

(1/2)− (1/3))+ (1− (1/3)× (1/2)− (1/3))+ (1− (1/3)−
(1/3)) = (4/3).

2) Decay Factor: For the factor F(s)
a (c, w, t), we need to

define a component activation start time so as to formulate
the decay effect. We can postulate that a user will start paying
attention to the posts in a parent component when the topic
is first discussed or when it is frequently discussed among
some nodes within the component. For the former, the def-
inition is obvious. For the latter, we can compute T(s)

c (w, t)
(peak time) which is the time t′ when the value of Fb(c, w, t′)
reaches maximum within the interval [t−Ls(w, t), t]. In case it
reaches maximum at multiple time points, we take the earliest
one. And in case there are no activations in the interval, we
consider that the component c has no influence on node w,
and F(s)

a (c, w, t) equals 0.
Given the activation start time of a parent component c to be

T(s)
c (w, t), the component with the activation start time closer

to the time t will be more influential on w at t. We adopt an
exponential decay [9], [10] which gives

F(s)
a (c, w, t) = 1+ e

−
(

t−T(s)
c (w,t)

)
/α

. (5)

The parameter α (also called the mean life time [10]) repre-
sents the expected time delay between an activation of a parent
component and that of its child node. Note that F(s)

a (c, w, t)
is formulated such that it is always larger than 1. Our prelim-
inary experimental results show that adding the offset value 1
gives more stable performance.

Example 2: Fig. 2(e) and (f) illustrates the calculation of
T(s)

c (w, t). As shown in Fig. 2(d), the component C1 contains
nodes {v1, v2, v3}. Node v1 is activated at time steps {1, 5}, v2
at time steps {2, 6}, and v3 at time step {3}. The activations
of component C1 = {v1, v2, v3} are considered to happen at
the union of the activation time steps of the three nodes, i.e.,
{1, 5} ∪ {2, 6} ∪ {3} = {1, 2, 3, 5, 6}. Given that the activations
of the component’s child node w happen at time steps {4, 7},
as shown in Fig. 2(f), we obtain Ls(w, 4− 1) = 3 (since there
are no previous activations), and Ls(w, 7 − 1) = 2. Prior to
time step 4, according to Example 1, at t = 1 and t = 2,
the value of the effective size remains 1. At t = 3, v3 is
activated, and the effective size increases to (4/3). Thus, the
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effective size of component C1 reaches maximum within the
interval [4− 1− Ls(w, 4− 1), 4− 1] = [0, 3] at time step 3.
Therefore, T(s)

c (w, 3) = 3. For time step 7, the effective
size of component C1 reaches maximum within the interval
[7 − 1 − Ls(w, 7 − 1), 7 − 1] = [4, 6] when v1 is activated,
i.e., T(s)

c (w, 6) = 5.
3) Overall Formulation: By combining the structure diver-

sity and decay factors, the overall influence (and we call it
effective count in the sequel) of the activation of a parent
component c on node w can be modeled as

Ns(c, w, t) = F(s)
a (c, w, t)F(s)

b

(
c, w, T(s)

c (w, t)
)
. (6)

The probability that the node w becomes active at time t+1
is given as

P(s)
w (t + 1) = 1−

∏

c∈Cs(w,t)

(
1− τc,w

)Ns(c,w,t)
. (7)

Given D = {Ds : s = 1, . . . , S} as the set of independent
information diffusion cascades, and θ = {τc,w} as the set of
diffusion probabilities, the log-likelihood function with respect
to θ can be written as

L(θ) =
S∑

s=1

ln P(Ds|θ, Ds(0))

=
S∑

s=1

Ts−1∑

t=0

⎛

⎝
∑

w∈Ds(t+1)

ln P(s)
w (t + 1)

+
∑

w�∈Ds(t+1)

∑

c∈Cs(w,t)

Ns(c, w, t) ln
(
1− τc,w

)
⎞

⎠

(8)

where Ds(0) are the nodes which are activated initially as
the original sources in the sth cascade. Since there could be
multiple paths from multiple sources in a cascade, Ds(0) could
consist of more than one node.

Then, the remaining step is to estimate θ = {τc,w} so as to
maximize (8).

C. Learning Algorithm

We first identify the parent components for each
node in the social network using community detection
algorithms [31], [35]–[37]. The “Clauset–Newman–
Moore” (CNM) algorithm [31] is adopted for the
community/component detection in most of our experi-
ments. We also evaluate the use of “InfoMap” [35] as an
alternative for comparison (see Section IV-F). We then com-
pute the effective counts of component activations Ns(c, w, t)
for defining the likelihood function. An EM algorithm is
derived to obtain the ML estimates of the model parameters
based on the observed cascades. The framework of our
learning algorithm is shown in Fig. 3.

1) Effective Counts of Component Activations: The detailed
steps for calculating the effective counts of component activa-
tions Ns(c, w, t) is summarized in Algorithm 1. In words, we
first precompute the nodes in component c which could cause
the activation of node w at time step t in the sth cascade and

Fig. 3. Framework of our learning algorithm.

Algorithm 1 Computing Effective Counts of Component
Activations
Input: network G = (V, E), cascades D = {D1, . . . , DS}
Output: effective counts of activations

for each parent component c of each node w ∈ V
at each time t in each cascade Ds, Ns(c, w, t)

1. global max, prod, sum
2. for all (c, w):w ∈ V and c ∈ B(w) do
3. for all i ∈ c do
4. for all s:i ∈ Ds do
5. for all t:w ∈ Ds(t + 1) or t = Ts − 1 do
6. Tc(w, c, s, t)← Tc(w, c, s, t)

∪{(i, min{t′:i ∈ Ds(t′) and t′ ∈ [t − Ls(w, t), t]})}
7. end for
8. end for
9. end for
10. for all s:∃i ∈ c:i ∈ Ds do
11. for all t:w ∈ Ds(t + 1) or t = Ts − 1 do
12. Nodes← Nil Fmax

b ← 0 Tmax ← 0
13. SORT (Tc(w, c, s, t), (i, t) ∈ Tc(w, c, s, t) by t)
14. for all t′:∃i:(i, t′) ∈ Tc(w, c, s, t) do
15. NewNodes← i:(i, t′) ∈ Tc(w, c, s, t)
16. F(s)

b (c, w, t′)←
Calculating_the_Effective_Size(Nodes, NewNodes)

17. if F(s)
b (c, w, t′) > max{F(s)

b (c, w, t′′),
t′′ ∈ [t − Ls(w, t), t′)} then

18.
∑

t′′∈(Tmax,t′] Ns(c, w, t′′)←
∑

t′′∈(Tmax,t′](1+ e−(t′′−Tmax)/α)Fmax
b

19. Fmax
b ← F(s)

b (c, w, t′) Tmax ← t′
20. end if
21. Nodes← Nodes ∪ NewNodes
22. end for
23. if t �= Ts − 1 then
24. F(s)

a (c, w, t)← 1+ e−(t−Tmax)/α

25. Ns(c, w, t)← F(s)
a (c, w, t)Fmax

b
26. end if
27.

∑
t′∈(Tmax,t] Ns(c, w, t′)←

∑
t′∈(Tmax,t](e

−(t′−Tmax)/α + 1)Fmax
b

28. end for
29. end for
30. end for

store them as Tc(w, c, s, t) where all the nodes in each com-
ponent are to be traversed. Then we compute Ns(c, w, t) based
on Tc(w, c, s, t). This is to avoid the time-consuming enumer-
ation of iterators in a for-loop for computing Ns(c, w, t). Also,
we precompute the sum of Ns(c, w, t) for cases where w is
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Algorithm 2 Calculating the Effective Size
Input: current nodes Nodes, the newly added nodes NewNodes
Output: F(s)

b (c, w, t′)
1. if Nodes = Nil then
2. max← 0 prod← 0 sum(w)← 0
3. end if
4. for all i ∈ NewNodes do
5. for all j ∈ Nodes do
6. max(i)← max(hij, max(i))
7. max( j)← max(hij, max( j))
8. prod(i)← prod(i)+ hij(hjw + ε)
9. prod( j)← prod( j)+ hij(hiw + ε)
10. end for
11. Nodes← Nodes ∪ i
12. sum(w)← sum(w)+ hiw + ε
13. end for
14. temp← 0
15. for all i ∈ Nodes do
16. if max(i) �= 0 then
17. temp← temp+ prod(i)

max(i)
18. end if
19. end for
20. F(s)

b (c, w, t′)← |Nodes| − temp
sum(w)

not activated. F(s)
b (c, w, t) (3) is computed incrementally when

there are new nodes to be added according to Algorithm 2.
Given a set of newly added nodes, a naïve way to calculate
F(s)

b (c, w, t) is to do it with two levels of summations, resulting
in a quadratic runtime with respect to the number of nodes.
Instead, it is not difficult to show that the formulation of the
effective size can be rewritten as

F(s)
b (c, w, t) = |Nc(t)| −

∑
j∈Nc(t)

prod( j)

max( j)
sum(w)

(9)

where prod( j) = ∑
q∈Nc(t)\{j} hjq(hwq + ε), max( j) =

maxk∈Nc(t) hjk, and sum(w) = ∑
j∈Nc(t)(hwj + ε). prod( j),

max( j) and sum(w) can be updated via scanning the current
set of nodes once when a new node j is added. The effective
size is computed by traversing prod( j) and max( j) of all the
nodes in the second scan. Thus, updating F(s)

b (c, w, t) takes
linear time.

2) Inferring Model Parameters: We make use of the
EM [38] algorithm to infer the model parameters. We denote
Y(s)

c,w(t) as the latent variable to indicate whether the activa-
tion of node w at time step t in the sth cascade is activated
by w’s parent component c. With reference to Ds, we rep-
resent the corresponding set of latent variables as Ys =
{Ys(0), Ys(1) . . . Ys(Ts)} where Ys(t) = {Y(s)

c,w(t)}. We then
derive the Q-function and infer the model parameters via the
EM algorithm which consists of an E-step and an M-step.

a) E-step: We take expectation of all possible assign-
ments of Y which can explain the observed cascades.

Given a node w ∈ Ds(t + 1) and its parent compo-
nent c ∈ Cs(w, t), the probability of successful activation is
(1− (1− τc,w)Ns(c,w,t)) given Y(s)

c,w(t+ 1) = 1. The probability
of failing to activate, i.e., Y(s)

c,w(t+1) = 0, is (1−τc,w)Ns(c,w,t).

The Q-function becomes

Q
(
θ |θ̂

)

=
S∑

s=1

Ts−1∑

t=0

⎛

⎝
∑

w�∈Ds(t+1)

∑

c∈Cs(w,t)

Ns(c, w, t) ln
(
1− τc,w

)

+
∑

w∈Ds(t+1)

∑

c∈Cs(w,t)

(
P
(

Y(s)
c,w(t + 1) = 1

)

ln
(

1− (
1− τc,w

)Ns(c,w,t)
)

+
(

1− P
(

Y(s)
c,w(t + 1) = 1

))
Ns(c, w, t)

ln
(
1− τc,w

))
⎞

⎠

where the probability for the activated parent component c
of node w to succeed in activating w at time step t + 1 is
calculated as

P
(

Y(s)
c,w(t + 1) = 1

)
= 1− (

1− τ̂c,w
)Ns(c,w,t)

P̂(s)
w (t + 1)

where τ̂c,w denotes the current estimate of τc,w, and P̂(s)
w (t+1)

is computed according to (7).
b) M-step: We solve the optimality condition

∂Q/∂τc,w = 0 for the new estimate of τc,w.
We define T+c,w,s (T−c,w,s) as the set of time steps {t}

in Ds where node w is (not) activated at t and at the
same time its parent component c has been activated since
L(s)

w (t). Also, we define the set of cascades where T+c,w,s is
not empty as S+c,w = {Ds : ∃t(c ∈ Cs(w, t) ∧ w ∈ Ds(t + 1))}
and the set of cascades where T−c,w,s is not empty as
S−c,w = {Ds : ∃t(c ∈ Cs(w, t) ∧ w �∈ Ds(t + 1))}. Then

∂Q/∂τc,w = 0

⇒
∑

s∈S+c,w

∑

t∈T+c,w,s

(
1− (

1− τ̂c,w
)Ns(c,w,t−1)

P̂(s)
w (t)

Ns(c, w, t − 1)

1

1− (
1− τc,w

)Ns(c,w,t−1)

)

= Nc,w = N+c,w + N−c,w
N+c,w =

∑

s∈S+c,w

∑

t∈T+c,w,s

Ns(c, w, t − 1)

N−c,w =
∑

s∈S−c,w

∑

t∈T−c,w,s

Ns(c, w, t − 1).

As the function

f
(
τc,w

) =
∑

s∈S+c,w

∑

t∈T+c,w,s

(
1− (

1− τ̂c,w
)Ns(c,w,t−1)

P̂(s)
w (t)

Ns(c, w, t − 1)
1

1− (
1− τc,w

)Ns(c,w,t−1)

)

− Nc,w
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Algorithm 3 Inferring Diffusion Network With Components
Input: network G = (V, E), cascades D = {D1, . . . , DS},

parent components {c} for each node w ∈ V
Output: component-based diffusion probabilities θ = {τc,w}

1. Assign initial values to θ̂ = {τ̂c,w}
2. for all (c, w) pairs do
3. N+c,w ←

∑
s∈S+c,w

∑
t∈T+c,w,s

Ns(c, w, t − 1)

4. N−c,w ←
∑

s∈S−c,w
∑

t∈T−c,w,s
Ns(c, w, t − 1)

5. if N+c,w = 0 and N−c,w �= 0 then
6. τc,w ← 0
7. end if //special cases for diffusion probabilities
8. end for
9. while not convergence do
10. E-step:
11. for all P̂(s)

w (t) do
12. P̂(s)

w (t)← 1−∏
c∈Cs(w,t−1)(1− τ̂c,w)Ns(c,w,t−1)

13. end for
14. M-step:
15. for all (c, w):S+c,w �= ∅ do
16. calculate τc,w using the bisection method for

function
∑

s∈S+c,w
∑

t∈T+c,w,s

(
1−(1−τ̂c,w)Ns(c,w,t−1)

P̂(s)
w (t)

Ns(c, w, t − 1) 1
1−(1−τc,w)Ns(c,w,t−1)

)

− Nc,w = 0.

17. end for
18. θ̂ ← θ
19. end while

is monotonic, we use the bisection method to get the solution
of f (τc,w) = 0. For our case, the starting interval to solve for
τc,w is set to [0, 1] satisfying the condition f (0)f (1) ≤ 0 for
the bisection method to work.

When N+c,w = 0, namely S+c,w = ∅, then

Q(
τc,w|τ̂c,w

) =
∑

s∈S−c,w

∑

t∈T−c,w,s

Ns(c, w, t) ln
(
1− τc,w

)+ const

where const stands for terms without τc,w included. The func-
tion becomes monotonically decreasing, and the maximum
value is reached when τc,w is set to the minimum possible
value, i.e., 0.

The E-step and M-step repeat until convergence. The
detailed steps are summarized in Algorithm 3.

3) Computational Complexity: Implementing the learning
algorithm involves three main steps: 1) load the network data,
the per-node neighbors’ community structure and the cascades
related data; 2) precompute the effective counts of components
(preprocessing); and 3) carry out the EM iterations.

For step 1), the cost for loading the network data is O(|V|+
|E|). For loading the per-node neighbors’ community structure,
it includes the similarity scores for all the node pairs in each
parent component (needed for computing the effective size).
Given that the number of nodes in a parent component c of
a node w is n(w, c), the total number of similarity scores to
be computed will be

∑
w∈V

∑
c∈B(w) n(w, c)2. But, since for

each node w, the cost for traversing the n(w, c) nodes for all
c ∈ B(w) is equivalent to that of visiting all its parent nodes,∑

w∈V
∑

c∈B(w) n(w, c) essentially gives |E|. By denoting Imax
to be the maximum indegree of the network, it is easy to

see that the worst case complexity for loading the similarity
scores is

∑

w∈V

∑

c∈B(w)

n(w, c)2 ≤ Imax

∑

w∈V

∑

c∈B(w)

n(w, c)

and thus O(Imax×|E|). Regarding the cascades information, the
worst case complexity is O(S×T) where T denotes the maxi-
mum length of a cascade record. Thus, the overall complexity
is O(|V| + Imax × |E| + S× T).

For step 2), the first major preprocessing task is to compute
Tc(w, c, s, t) (lines 2–9 in Algorithm 1). The worst case com-
plexity is essentially that of computing Tc(w, c, s, t), that is,∑

w∈V
∑

c∈B(w) n(w, c)× S× T, which gives O(S× T × |E|).
The second task is to compute the effective size for activated
nodes in a component (lines 10–30). The node activations in
a component c [stored in Tc(w, c, s, t)] are added incremen-
tally and then the value of F(s)

b (c, w, t′) is updated accordingly.
The complexity for such an update is O(n(w, c)) (lines 7–12
in Algorithm 2). Thus, the overall complexity of adding all the
nodes (lines 14–16) for updating F(s)

b (c, w, t′) is O(n(w, c)2).
Then, the worst case complexity becomes
∑

w∈V

∑

c∈B(w)

S× T × n(w, c)2 ≤ Imax

∑

w∈V

∑

c∈B(w)

S× T × n(w, c)

which gives O(Imax×S×T×|E|). The overall complexity for
the preprocessing step (i.e., Algorithm 1) is thus O(Imax×S×
T × |E|).

For the EM algorithm (step 3) as shown in Algorithm 3, we
first calculate N+c,w and N−c,w (lines 2–8) and the corresponding
complexity is

∑

w∈V

∑

c∈B(w)

S× T ≤
∑

w∈V

∑

c∈B(w)

n(w, c)× S× T

and thus O(S × T × |E|). The main part of the EM algo-
rithm corresponds to lines 9–19. In each iteration, the bisection
method (line 16) is the most costly step with the complex-
ity of

∑
w∈V

∑
c∈B(w) S × T which gives O(S × T × |E|). By

denoting the number of iterations in the bisection method
as k, then the complexity for each EM iteration becomes
O(k × S× T × |E|).

IV. EXPERIMENTS

We evaluate the proposed model using both synthetic and
real data sets. We show that the component-based diffusion
model is more accurate in modeling diffusion when compared
with the node-based ones. All the experiments are conducted
on a machine with a 2.67 GHz 4-core CPU and 32 GB RAM
running Linux. The algorithms are developed using C++. In
the following, we first present the experimental settings for
conducting the performance evaluation.

A. Experimental Settings

We first implement a basic node-based IC model which
extends the original IC model by considering the influence
of all the parent nodes activated after the child node’s latest
activation instead of only those just activated at the previous
time step. We use it as the baseline reference for evaluation.
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The main reason of using this modified IC model is to make
sure that the comparison is only based on whether the com-
ponent structure is adopted or not but not other modeling
aspects.

We then implement the component-based model with dif-
ferent extensions by adding the structure diversity factor and
the decay factor into the model. In particular, we have tested
the following combinations.

1) ICM: The basic IC model.
2) ICM-DK: The IC model with the decay factor.
3) COMP: The component-based IC model without the

decay factor.
4) COMP-DK: The component-based IC model with the

decay factor.
ICM and ICM-DK are essentially node-based, while the other
two are component-based. For ICM and ICM-DK, the number
of parameters for each node equals the number of its par-
ent nodes, while for COMP and COMP-DK, the number is
reduced to that of its parent components. And for both COMP
and COMP-DK, we adopt the dynamic effective size to define
the structural diversity factor.

To contrast the effectiveness of adopting different structural
diversity factors as mentioned in Section III-B1 as well as
different ways to define the time for a component to be con-
sidered activated, we implement the following variants of the
component-based model.

1) COMP(1st): The component-based model without con-
sidering structural diversity. The time of the first node
activation in the component is considered as the time of
the component activation.

2) COMP_SMod(1st): The static modularity is adopted as
the structural diversity factor. The time of the first node
activation is considered as the time of the component
activation.

3) COMP_SEffSz(1st): The static effective size is adopted
as the structural diversity factor. The time of the first
node activation is considered as the time of the compo-
nent activation.

4) COMP_DMod(Max): The dynamic modularity is
adopted as the structural diversity factor. The time
when the dynamic modularity value reaches maximum
is considered as the time of the component activation.

5) COMP_DEffSz(Max): The dynamic effective size is
adopted as the structural diversity factor. The time
when the dynamic effective size reaches maxi-
mum is considered as the time of the component
activation.

For all the experiments, we set the initial values of θ̂ =
{τ̂c,w} to be within [0, 0.1] as the diffusion probabilities in real
cases are small (e.g., with a mean value of 0.04 and standard
deviation of 0.07 in [39]). We test different initializations and
report the best results to get rid of the local minimum problem,
though the variations are found to be only within 0.005 for
almost all the runs. For detecting the community structure,
we consider nodes within two hops (instead of just the direct
neighbors) to enhance the detection accuracy. For the decay
factor α, we try different values and find setting α to 100
works fine for all the models.

(a) (b) (c)

Fig. 4. Complementary cumulative distributions of parent component size
in (a) and (b) synthetic networks with 5000 and 10 000 edges, respectively,
and the (c) real network (MemeTracker).

B. Performance Evaluation

Given that the ground truths of the diffusion models are
unknown, we adopt perplexity as the evaluation metric. The
perplexity over the observed cascades is defined as

Perplexity = −
∑S

s=1 ln P(Ds)

W
(10)

where P(Ds) is the probability to generate the sth cascade,
and the normalization term W is the number of activations
due to the influence of the corresponding nodes’ parents. A
smaller perplexity value indicates the inferred model to be
more probable. Fivefold cross-validation is adopted for all the
experiments.

In addition, the simulation approach can also be used for the
evaluation [40]. Information cascades can be generated using
different diffusion models given the same set of initial node
activations for each cascade in the test set to first estimate
empirically the probabilities of different nodes being activated
afterwards. Then, the nodes are ranked accordingly and the
percentage of the top K nodes also found in the test set can
be computed. The metric is commonly called precision at K,
denoted as P@K. Again, fivefold cross-validation is adopted.

C. Experiments on Synthetic Data

We generate synthetic cascades based on the component-
based IC model with the dynamic effective size adopted for
the structural diversity factor. We anticipate that the inferred
model with the same assumption for cascade generation should
perform the best.

1) Experimental Setup: We first generate two scale-free
networks of 1000 nodes using the SNAP platform [41] as real
networks are mostly scale-free. One network is generated with
5000 edges and the other with 10 000 edges. For each network,
100 cascades are generated based on the proposed component-
based model where the decay factor α is set to 100 and the
diffusion probabilities are randomly assigned. Note that the
network with 10 000 edges is denser and thus there are more
activations in the cascades, providing more data for model
training. Fig. 4(a) and (b) shows the complementary cumula-
tive distributions of the size of the parent components k (i.e.,
the fraction of parent components that have nodes greater than
or equal to k) in the two synthetic networks. The long tail dis-
tribution indicates the presence of parent components with a
wide range of sizes.

2) Generative Ability: We apply ICM, ICM-DK, COMP,
and COMP-DK to the synthetic networks. As mentioned
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(a) (b)

Fig. 5. Performance comparison on synthetic data for networks with (a) 5000
edges and (b) 10 000 edges.

TABLE II
PERFORMANCE COMPARISON IN TERMS OF P@K BASED ON THE

SYNTHETIC DATA. THE BEST RESULTS ARE PRINTED IN BOLDFACE

TABLE III
PERFORMANCE COMPARISON AMONG THE COMPONENT-BASED

MODELS IN TERMS OF PERPLEXITY BASED ON THE SYNTHETIC

DATA. THE BEST RESULTS ARE PRINTED IN BOLDFACE

in Section IV-A, we adopt the dynamic effective size
(COMP_DEffSz(Max)) for both COMP and COMP-DK to
define the structural diversity factor. The performance com-
parison results in terms of perplexity and P@K are shown
in Fig. 5 and Table II, respectively. According to Fig. 5, we
observe that all the models perform better for the network
with 10 000 edges when compared with that with 5000 edges
due to more training data. Also, while adding the decay fac-
tor can result in a perplexity decrease of 0.02 for the two
networks, adding the structure diversity factor achieves more
significant improvement with a perplexity decrease of 0.04.
Combining both, the performance further improves by a per-
plexity decrease of 0.02 and 0.01, respectively, for the two
networks.

In addition, Table II shows the performance measured in
terms of P@K for K = {10, 50, 100}. The performance rank-
ing among the models remains more or less the same given
different values of K. COMP and COMP-DK apparently out-
perform ICM and ICM-DK, especially when the data is sparse
(5000 edges).

Then, we follow the experiment protocols described in
Section IV-A. Table III shows the performance of differ-
ent variants of the component-based model. Among them,
COMP_DEffSz(Max) achieves the best performance. Again,
as anticipated, for the network with 10 000 edges, more
apparent improvement is achieved.

By contrasting the performance of COMP_SEffSz(1st)
versus COMP_SMod(1st) and COMP_DEffSz(Max) versus
COMP_DMod(Max), we see that the use of the effective
size gives better results than using modularity. In addi-
tion, by contrasting the performance of COMP_DEffSz(Max)
versus COMP_SEffSz(1st) and COMP_DMod(Max) versus
COMP_SMod(1st), the dynamic structural diversity measures
are found better when compared with the static counterparts,
except for COMP_DMod(Max) applied to the network with
5000 edges. For the decay factor, as shown in Table III, its
inclusion improves the performance in most cases, except for
the models with static structural diversity measures for the
network with 10 000 edges.

D. Experiments on Real Data

To validate if component-based diffusion indeed happens in
online social networks, we apply the proposed model to a real
social network data set.

1) Data Set: We use the MemeTracker [42] data set that
contains: 1) the link structure of websites with news articles
and blog posts and 2) the corresponding information cascades.
It covers a period of nine months from August 1, 2008 to
April 30, 2009. A website A is assumed to have influence on
a website B if a post in B has mentioned a post in A. Then,
there will be an edge from node A to node B. The data set
contains 4m nodes and 13m edges.

To investigate if it is common to have parent compo-
nents with more than one node in the data set, we plot
the corresponding complementary cumulative distribution as
shown in Fig. 4(c) and observe that it follows the power
law. Thus, having parent components with more than one
node is highly probable, which hints modeling the struc-
tural diversity of node neighborhood is meaningful for the
MemeTracker data set. As an illustrated example, we extract
from the data set the parent nodes of the website “ksat.com,”
a local news website in San Antonio. The parent nodes form
several communities which are found to be corresponding
to: 1) general news (“news.bbc.co.uk,” “cnn.com”); 2) busi-
ness news (“economist.com,” “forbes.com”); and 3) sports
(“sports.espn.go.com”), and so on. It is not difficult to inter-
pret that each group of the websites essentially forms an
independent information source.

For the cascades [18], each is defined based on a frequently
mentioned phrase or its variants in the posts. For each cascade,
the time steps and the corresponding websites mentioning the
phrase or its variants are recorded. The data set contains 71 568
cascades.

2) Generative Ability: We apply ICM, ICM-DK, COMP,
and COMP-DK to the MemeTracker data set and the results
are shown in Fig. 6(a). For COMP and COMP-DK, the
dynamic effective size is used to measure structure diver-
sity. Both component-based diffusion models give significantly
lower perplexity values when compared with the node-based
counterparts. When α = 100, adding the decay factor improves
the ICM with a perplexity decrease of 2.68. This indicates that
the decay of influence is an important factor governing the
diffusion. By incorporating the component-based formulation,
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(a) (b)

Fig. 6. (a) Performance comparison between node-based and component-
based diffusion models given different values of α (MemeTracker). (b) Effect
on the model accuracy given different ratios of nodes activated within an
activated component (MemeTracker).

TABLE IV
PERFORMANCE COMPARISON OF VARIANTS OF THE COMPONENT-BASED

MODEL BASED ON THE MEMETRACKER DATA SET. THE BEST

RESULTS ARE PRINTED IN BOLDFACE

the decrease in perplexity can reach 5.01. This indicates the
validity of the proposed component-based diffusion models
for social networks. Combining both factors, the performance
further improves by an additional drop of 0.34 in perplexity.

Also, we compare the performance of the models inferred
with the value of the decay coefficient α ranging from three
days (α = 100) up to five months (α = 5000). Referring to
Fig. 6(a), the perplexity values of ICM and COMP remain
unchanged as they do not consider the decay factor at all. For
ICM-DK and COMP-DK, the performance decreases as the
value of α increases. This indicates that the influence decay
should not be too slow. For instance, readers most likely do
not pay attention to the posts appearing a few months ago.

Table IV shows the performance comparison of the mod-
els given different combinations of the structure diver-
sity and decay factors. The results are consistent with
those based on the synthetic data. Without the decay fac-
tor, COMP_DEffSz(Max) achieves the best performance
(perplexity = 13.662). With the decay factor incorpo-
rated, COMP_DEffSz-DK(Max) achieves the best perfor-
mance (perplexity = 13.326). In general, the settings with
the effective size incorporated achieve better performance
when compared with those using modularity, as shown
in Table IV (COMP_SEffSz(1st) versus COMP_SMod(1st);
COMP_DEffSz(Max) versus COMP_DMod(Max)). However,
we observe that COMP_SEffSz(1st) and COMP_SMod(1st)
perform extremely bad compared to their dynamic counter-
parts COMP_DEffSz(Max) and COMP_DMod(Max), which,
however, is not observed when the synthetic data is used. To
explain that, we further compared the static and dynamic mod-
els by referring to nodes with only selected parent components.
In particular, for each node, we compute the ratio of the num-
ber of activated parent nodes to the total number of nodes in
the activated parent components. We then set a lower bound

on the ratio, and select different subsets of nodes for com-
puting the corresponding perplexity values. When the lower
bound is set to zero, it is equivalent to selecting all the nodes.
When the lower bound is larger than zero, we start filtering out
nodes with their activated parent components having a certain
degree of their nodes not activated. When the ratio reaches
one, only the nodes with their parent components contain-
ing only activated parents are selected. For such a case, the
static and dynamic formulations should behave exactly the
same. Fig. 6(b) shows the changes of the perplexity values
of COMP_SEffSz(1st) and COMP_DEffSz(Max) as the lower
bound on the ratio increases from zero to one. As anticipated,
we observe that COMP_SEffSz(1st) and COMP_DEffSz(Max)
give the same performance when the ratio lower bound is
one. As the ratio lower bound is less than one, we find a
substantial rise in perplexity for COMP_SEffSz(1st) while
COMP_DEffSz(Max) still maintains a low perplexity value.

E. Run-Time

The run-time for: 1) loading the network and the cascades
related information; 2) preprocessing the cascades; and 3) run-
ning the EM algorithm for both synthetic and real networks are
shown in Fig. 7. In particular, we compare the run-time per-
formance of ICM, ICM-DK, COMP_DEffSz(Max) (labeled as
COMP), COMP_DEffSz(Max)-DK (labeled as COMP-DK),
COMP(1st), and COMP-DK(1st). COMP_DEffSz(Max) and
COMP_DEffSz(Max)-DK incur longer time for loading infor-
mation as the similarity scores for all the node pairs in each
parent component are involved.

Regarding the time for preprocessing cascades, the
component-based models consume slightly more time as com-
puting the effective counts of component activations involves
aggregation of nodes’ activations into the parent compo-
nents’ [Algorithm 1 (lines 3–8) with the complexity of
O(S × T × |E|) as discussed in Section III-C3]. Among
them, COMP_DEffSz(Max) and COMP_DEffSz(Max)-DK
take longer time mainly due to the computation of the effec-
tive size [Algorithm 1 (lines 14–22) with the complexity of
O(Imax × S× T × |E|)].

For the run-time of the EM algorithm (Algorithm 3),
ICM-DK takes significantly long time than ICM as adding the
decay factor requires the use of the bisection method for esti-
mating the corresponding parameters [the complexity becomes
O(k × S × T × |E|) instead of O(S × T × |E|) as presented
in Section III-C3]. The run-time needed by the component-
based models drops significantly as all the computations are
basically component-based instead of node-based.

F. Sensitivity to Component Identification Methods

The key contribution of our paper is to demonstrate the
importance of introducing the component-based notion in the
diffusion modeling. Various algorithms for community detec-
tion can be utilized to detect parent components. In this
section, we evaluate the sensitivity of the proposed component-
based IC model given two different community detection
algorithms, namely the “CNM” [31] and the InfoMap [35]
algorithms. The results are presented in Table V. We find that
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(a) (b) (c)

Fig. 7. Comparison of run-time for loading the network and the cascades
related information, preprocessing the cascades, and running the EM algorithm
on (a) and (b) synthetic networks with 5000 and 10 000 edges and (c) real
data.

TABLE V
PERFORMANCE COMPARISON BASED ON DIFFERENT ALGORITHMS

USED FOR THE COMMUNITY DETECTION STEP

the models inferred with CNM and InfoMap used in the com-
munity detection step give similar modeling accuracy, with the
former one performs slightly better than the latter.

V. CONCLUSION

In this paper, we proposed a component-based IC model
which incorporates the community structure of the node neigh-
bors to model information diffusion. We adopted the effective
size—a structural metric well-known in social science and
extended it to a dynamic version for characterizing the influ-
ence of an activated parent component. An EM algorithm
was derived for training the component-based IC model. With
the proposed model, we obtained significant improvement
on model accuracy at the expense of reasonable increase in
run-time.

This paper has some limitations. Unlike some related work
where the network structure is unknown [18], we assume that
the network structure is known. And for simplicity, we assume
that the diffusion rate is static and topic-independent, and that
activations only occur at discrete time steps. Also, we assume
that the cascade information obtained from the MemeTracker
data set is correct and complete. For future work, the above
assumptions can be further relaxed. In addition, other facets
of structural properties besides redundancy can be considered
to enhance the model accuracy. For instance, the hierarchi-
cal structure of the neighborhood can be explored for its
importance to determine how influential a component activa-
tion should be. The proposed component-based IC model can
also be applied to other network analysis tasks, e.g., influence
maximization.
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