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Abstract—Diffusion is known to be an important process
governing the behaviours observed in network environments
like social networks, contact networks, etc. For modeling the
diffusion process, the Independent Cascade Model (IC Model)
is commonly adopted and algorithms have been proposed for
recovering the hidden diffusion network based on observed
cascades. However, the IC Model assumes the effects of multiple
neighbors on a node to be independent and does not consider
the structural diversity of nodes’ neighbourhood. In this paper,
we propose an extension of the IC Model with the community
structure of node neighbours incorporated. We derive an
expectation maximization (EM) algorithm to infer the model
parameters. To evaluate the effectiveness and efficiency of the
proposed method, we compared it with the IC model and
its variants that do not consider the structural properties.
Our empirical results based on the MemeTracker dataset,
shows that after incorporating the structural diversity, there
is a significant improvement in the modelling accuracy, with
reasonable increase in run-time.

Keywords-Social networks, structural diversity, diffusion net-
work, Independent Cascade Model

I. INTRODUCTION

Diffusion is the phenomenon that an action or information

spreads from one node to another via edges in a network. It is

known to be an important process governing the behaviours

observed in network environments like social networks,

contact networks, etc. The Independent Cascade Model (IC

Model) [1] and the Linear Threshold Model (LT Model) [2]

are two widely used diffusion models for social networks.

The IC Model [1] assumes that a node can be activated

by just one of its neighbors in the diffusion process and

the effects of multiple neighbors on a node are assumed to

be independent. The LT Model [2] assumes that whether

a node will be activated depends on the aggregation of

its neighbors’ activations. In this paper, we focus on the

IC model and its extensions for more accurate modeling

of diffusion processes in social networks. In the literature,

the simple IC model has been extended in various ways.

For instance, one can consider the time information and

model the influence of a node activation to be discounted

by an exponential decay, based on the observation that most

people are more interested in recent news [3, 4]. Also, the

basic IC model assumes that the transmission rate over

the whole network is the same and constant. By relaxing

the assumption, some recent work assumes the transmission

rates to be dynamic [5, 6]. However, most of the existing

work does not consider the effect of structural diversity of

the neighbors on node activation.

All diffusion models come with the notion of

neighborhood via which the information is spread.

For neighbors with direct connections (also called ties)

with an individual, they could exhibit different forms of

influence which may depend on their structural properties

in the social network. For example, in the literature, there

have been studies on the relationship between the presence

of different local ties and the overall network properties.

The importance of weak ties acting as “local bridges”

in facilitating effective information diffusion in social

networks has long been recognized [7]. Recently, related

perspectives have been taken for online communication

and social media analysis [8], [9], [10]. For example, J.-P.

Onnela et al. [8] studied the presence of strong and weak

ties in mobile communication networks and showed that

random removal of weak ties could end up with networks

falling apart, no longer supporting the communication. In

[9], it was demonstrated that considering the connected

components of the neighbors correlates well with the

probability of forming social coalition. So, it is not how

many friends are influencing you that matters but how many

loosely coupled “groups”(also referred to as non-redundant

contacts in [11]). In [10], online social ties in heterogeneous

networks are also investigated.

In this paper, we focus on the diffusion network inference

problem using the IC Model and argue that the structural

diversity of nodes’ neighborhood should be incorporated into

the diffusion model. An extended IC model is proposed and

the corresponding inference algorithm based on the EM al-

gorithm is derived. Given the inferred structure, a number of

network analysis tasks like influence maximization [12, 13]

can also be carried out. Note that unlike some related work

where the network structure is not known [14], we assume

that the network structure is known and infer the diffusion

probabilities based for a set of observed cascades. Also, for
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the simplicity sake, we consider only static transmission

rates and assume that activations only happen at discrete

time steps.

The remainder of this paper is organized as follow. Section

II presents related work on variants of the IC Model. Section

III describes the proposed model as well as the algorithm

for inferring the model parameters. The experimental results

can be found in Section IV. Section V concludes the paper

and provides pointers for future work.

II. RELATED WORK

The following summarizes related work presented in the

context of contagion. According to [15], contagion can

be categorized as simple and complex ones. With simple

contagion, only one source is sufficient for diffusion while

complex contagion is related to collective behaviours that

require social affirmation from multiple sources. The IC

Model [1] models diffusion processes where a node can be

activated by just one neighbor and the effect of the neigh-

bors on a node are assumed to be independent. Thus, one

can consider the IC Model corresponds to the mechanism

for simple contagion. The LT Model [2] assumes a node

being activated with respect to the sum of the neighbors’

aggregation. Thus, the LT Model is for complex contagion.

In the literature, there exist many variants to the basic

IC Model. In [3], [4], the influence was modelled with

exponential decay, based on the observation that most people

are more interested in recent news. Each node is allowed to

be activated multiple times in [16], [17], [18] for the reason

that a user can post several posts on the same topic instead

of just one. In [3], [4], and [19], the IC model was extended

to allow continuous trials by neighbors instead of just once

based on the assumption that one could be motivated when

he/she revisits the post, even though not motivated before.

Besides, the IC Model for modelling the propagation of

competing opinions has been proposed in [20], [21]. Also,

some recent work assumes the transmission rates of diffusion

to be dynamic [5, 6]. Satio et al. [22], [23] proposed an

asynchronous time model where activations can happen in

continuous time.

III. A DIFFUSION MODEL WITH NEIGHBORS

STRUCTURAL DIVERSITY INCORPORATED

A. Preliminaries

We represent a given network as a directed graph G =
(V,E) with V being the set of nodes and E being the set

of edges. Let e = (v, w) denote an edge from node v to

node w, and f(v) and b(v) denote the sets of child and

parent nodes for node v respectively, given as: f(v) = {w :
(v, w) ∈ E} and b(v) = {u : (u, v) ∈ E}. For each node w,

we define the connected components of its parent nodes as

parent components B(w) = {Bi(w) : i = 1, · · · , Nc(w)}
where Nc(w) is the number of components corresponding

to b(w). And reversely, for a component c, we define the

set of nodes w which has component c as one of its parent

components as F (c) = {w : c ∈ B(w)}.
With the assumption that the component structure of the

parents of each node is static, we define for each component-

node pair (c ∈ B(w), w) a component-based diffusion
probability τc,w with 0 ≤ τc,w ≤ 1. We also allow a node

to be activated multiple times.

Fig. 1 illustrates a node w and its neighborhood b(w) =
{v1, v2, v3, v4, v5, v6}. The neighborhood forms two com-

ponents, that is B(w) = {B1(w) = C1, B2(w) = C2}.
Each component consists of interconnected nodes, i.e., C1 =
{v1, v2, v3} and C2 = {v4, v5, v6}. Thus, the component-

based diffusion probability are τC1,w and τC2,w respectively.

B. Problem Formulation

Let Ds = {Ds(0), Ds(1) · · ·Ds(Ts)} be the sth infor-

mation diffusion cascade observed where Ds(t) is the set

of nodes activated at time step t and Ts is the final time

step for cascade Ds. In our proposed diffusion model, the

diffusion process of a particular cascade proceeds as follow.

Given the initial set of activated nodes in the sth cascade

(Ds(0)), we assume that they can cause the nodes with their

“parent” components containing at least one of the nodes

in Ds(0) to be activated. We define Cs := {Cs(t)} where

Cs(t) refers to the set of components active at time step

t in the sth cascade. A component is active at time step

t if it has at least one node in it which is activated on or

before time step t. In general, we assume that the parent

component of a node w has influence on node w at time

step t if the component contains at least one node activated

after the latest activation of the node w. In the context of

social networks, one can interpret this as the fact that we

are only interested in recent news and that the posts before

our previous excitement have little influence. Then, based

on the diffusion probabilities {τc,w} associated to the active

components, some of the corresponding nodes w will be

activated accordingly. The process continues until there are

no more nodes being activated and the cascade stops. To

Figure 1. Node-based vs. component-based diffusion.
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infer an accurate diffusion model, it is expected that the

overall probability of generating all the observed cascades

{Ds} should be maximized.

In this paper, we investigate factors which may govern the

effectiveness of the component’s activation caused by the

activation of its element nodes. In particular, we postulate

that within a parent component, the degree of influence on

the node with the component as its parent could be affected

by (1) when its element nodes are activated, and (2) the

structural diversity of the component. We represent the two

factors as F
(s)
a (c, w, t) ∈ [0, 1] and F

(s)
b (c, w, t) ∈ [1, nc]

respectively where nc is the number of nodes in the com-

ponent c, and their combined effect as

Ns(c, w, t) = F (s)
a (c, w, t)F

(s)
b (c, w, t). (1)

Ns(c, w, t) takes values between 0 and nc and is here

interpreted as the effective count of an observed compo-

nent activation. In other words, instead of considering each

observed component activation equally in the subsequence

model inference algorithm, we allow the counting of each

activation to be “weighted” by Ns(c, w, t).

For the factor F
(s)
a (c, w, t), with reference to node w,

we argue that an activated parent component with its first

node activation happening more recently will be more

influential compared to the components with their first

node activations happening earlier. In the context of social

networks, we assume that ones are more interested in recent

news items than older ones. Using an exponential decay,

we define for a node w which may get activated at time

step t+ 1 F
(s)
a (c, w, t) as

F (s)
a (c, w, t) = e−(t−T (s)

c (w,t))/α. (2)

where T
(s)
c (w, t) is the time of first node activation in

component c which falls in the interval [L
(s)
w (t+1), t]. Here

L
(s)
w (t+1) defines the latest activation time of node w before

time t + 1. If none of the activations fall into the interval,

we consider that the component c has no influence on node

w and F
(s)
a (c, w, t) equals to 0.

The examples illustrated by Figs. 2 and 3 show how to

calculate T
(s)
c (w, t). As shown in Fig. 2, the activations of

the component C1 = {v1, v2, v3} are enumerated as the

union of activations of the three nodes. v1 is activated at

time steps {1, 3}, v2 at time steps {2, 5}, v3 at time step

{6}. Hence the activations of C1 are considered to happen

at {1, 3}∪{2, 5}∪{6} = {1, 2, 3, 5, 6}. Then, given that the

activations of the component’s child node w happen at time

steps {2, 7}, as shown in Fig. 3, we can get L
(s)
w (2) = 0 (If

there are no previous activations for node w, we set the value

as 0.), and L
(s)
w (7) = 2. At time step 2, the first activation

of component C1 within the interval [L
(s)
w (2), 2−1] = [0, 1]

(which may cause the activation of w at time step 2),

i.e., T (s)
c (w, 1), is 1. At time step 7, the first activation of

Figure 2. Node and component activations.

Figure 3. Illustrating how node w is affected by recent component
activations.

component C1 within the interval [L
(s)
w (7), 7 − 1] = [2, 6],

i.e., T (s)
c (w, 6), is 2.

For the factor F
(s)
b (c, w, t), we argue that the information

provided by subsequent activations of nodes within a more

tightly connected component will be more redundant. In

social networks, we assume that the news provided by

similar websites are relatively redundant. We use modularity

which is well-known for its use in community detection

[24, 25] to measure the tightness of connections within one

component. The modularity Q is formally defined as the

fraction of edges that fall within communities subtracted

from it the expected value of the same quantity in terms of

randomized network with the same node degree distribution

[24]: Q = 1
2m

∑
vw[Adjvw − kvkw

2m ]δ(cv, cw) where Adjvw
equals to 1 if v and w are connected, and 0 otherwise,

δ(i, j) is a δ-function which gives 1 if i = j and 0
otherwise, m is the number of edges in the network, kv
(kw) is the out-degree of node v (w) and cv (cw) is the

community of node v (w). This definition can be rewritten as

Q =
∑
c

Qc =
∑
c

1

2m

(∑
v∈c

∑
w∈c

Adjvw −
(
∑

v∈c kv)
2

2m

)
.

(3)
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Qc will reach the maximum value when component c
is fully connected, which gives Qmax

c = 1
2m

(
nc(nc −

1) − (
∑

v∈c
kv)

2

2m

)
where nc denotes the number of nodes

in community c. And Qc will reach the minimum value

when there is no connection in a component, which gives

Qmin
c = − 1

4m2 (
∑

v∈c kv)
2.

We use −Qc as structural metric for component c to

model that more tightly connected component will have

discounted influence due to the redundancy. To compute

F
(s)
b (c, w, t), instead of normalizing the value of −Qc to

[−Qmax
c ,−Qmin

c ], we normalize them to the range [1, nc],
which gives

F
(s)
b (c, w, t) =1 +

(nc − 1)(Qmax
c −Qc)

Qmax
c −Qmin

c

= nc − 2 |Ec|
nc

.

(4)

where |Ec| is the number of edges in component c.
We thus calculate the probability that the node w

becomes active at time t+ 1 as

P (s)
w (t+ 1) = 1−

∏
c∈B(w)∩Cs(t)

(1− τc,w)
Ns(c,w,t). (5)

where Ns(c, w, t) is the effective number of activations due

to component c influencing node w at time t, and Cs(t) is

the set of components active at time step t in the sth cascade.

Given D = {Ds : s = 1, · · · , S} be the set of inde-

pendent information diffusion cascades, the log-likelihood

function with respect to θ can be defined as

L(θ) =
S∑

s=1

logP (Ds|θ, D(s)
0 )

S∑
s=1

logL(θ;Ds)

=

S∑
s=1

Ts−1∑
t=0

( ∑
w∈Ds(t+1)

logP (s)
w (t+ 1)

+
∑

c∈Cs(t)

∑
w∈F (c)\Ds(t+1)

Ns(c, w, t)log(1− τc,w)

)

(6)

where D
(s)
0 are the nodes which are activated with absence

of parent components’ activations, i.e., activated by itself and

serve as the sources in the sth cascade. Since there could

be multiple paths from multiple sources in a cascade, D0
s

could consist of more than one node.

Then, the remaining problem is to estimate θ = {τv,w}
so as to maximize (6).

C. Learning Algorithm

We first find the parent components for each node

according to the neighbourhood network structure. Here we

use the community detection method ”Clauset-Newman-

Moore” [24], which has been applied to large networks

and the detected communities have considerable number of

nodes. We then apply the Expectation-Maximization (EM)

[26] algorithm to estimate the model parameters. We define

latent variables Y
(s)
c,w(t) to indicate whether the activation of

a node w at time step t in the sth cascade is caused by w’s

parent component c or not. Similar to the definition for Ds,

we represent the corresponding set of latent variables as

Ys = {Ys(0), Ys(1) · · ·Ys(Ts)} where Ys(t) = {Y (s)
c,w(t)} is

the set of latent variables for all the activations at time step

t for the sth cascade, which is used to represent whether or

not c activated w by setting Y
(s)
c,w(t) as 1 or 0.

Based on the latent variables defined, we derive the Q-

function and estimate the model parameters via the EM

algorithm which consists of an E-step and an M-step.

1) E-step: Take expectation of all possible assignments

of Y which can explain the observed cascades.
Given that for a node w ∈ Ds(t+1) and its parent com-

ponent c ∈ Cs(t), the probability of successful activation

is
(
1 − (1 − τc,w)

Ns(c,w,t)
)

given Y
(s)
c,w(t + 1) = 1 and

(1 − τc,w)
Ns(c,w,t) given Y

(s)
c,w(t + 1) = 0. The Q-function

can be formulated as:

Q(θ|θ̂) =
S∑

s=1

Ts−1∑
t=0

EY [logP (Ds(t+ 1), Ys(t+ 1)|θ)|D, θ̂]

=

S∑
s=1

Ts−1∑
t=0

∑
c∈Cs(t)

( ∑
w∈F (c)∩Ds(t+1)

E
Y

(s)
c,w(t+1)

[log

((
1− (1− τc,w)

Ns(c,w,t)
)
Y (s)
c,w(t+ 1)

+ (1− τc,w)
Ns(c,w,t)

(
1− Y (s)

c,w(t+ 1)
))

]

+
∑

w∈F (c)\Ds(t+1)

Ns(c, w, t)log(1− τc,w)

)
.

(7)

Also, the probability for the activated parent component c of
the node w to succeed in activating w at time step t+1, i.e.,
P (Y

(s)
c,w(t+1) = 1), can be calculated as

1−(1−τ̂c,w)Ns(c,w,t)

P̂
(s)
w (t+1)

where τ̂c,w stands for the current estimate of τc,w and

P̂
(s)
w (t+ 1) can be calculated using (5). Therefore,

Q(θ|θ̂)

=

S∑
s=1

Ts−1∑
t=0

∑
c∈Cs(t)

( ∑
w∈F (c)∩Ds(t+1)(

1− (1− τ̂c,w)
Ns(c,w,t)

P̂
(s)
w (t+ 1)

log
(
1− (1− τc,w)

Ns(c,w,t)
)

+
(
1− 1− (1− τ̂c,w)

Ns(c,w,t)

P̂
(s)
w (t+ 1)

)
Ns(c, w, t) log(1− τc,w)

)
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+
∑

w∈F (c)\Ds(t+1)

Ns(c, w, t)log(1− τc,w)

)
.

(8)

2) M-step: Solve the optimality condition ∂Q/∂τc,w = 0
for the new estimate of τc,w.

We define T+
c,w,s as the set of time steps {t} with

reference to the sth cascade satisfying the condition that
node w is activated at t and its parent component c has

been activated since L
(s)
w (t). T−c,w,s is the set of time

steps {t} where node w is not activated at t, but its

parent component c has been activated since L
(s)
w (t). More-

over, we define a set of cascades where T+
c,w,s is not

empty as S+
c,w = {Ds : ∃t

(
c ∈ Cs(t) ∧ w ∈ Ds(t+ 1)

)}
and a set of cascades where T−c,w,s is not empty as

S−c,w = {Ds : ∃t
(
c ∈ Cs(t) ∧ w �∈ Ds(t+ 1)

)}. Thus the
derivation is given as

∂Q/∂τc,w = 0

⇒
∑

s∈S+
c,w

∑
t∈T+

c,w,s

(
1− (1− τ̂c,w)

Ns(c,w,t−1)

P̂
(s)
w (t)

Ns(c, w, t− 1)(1− τc,w)
Ns(c,w,t−1)−1

1− (1− τc,w)Ns(c,w,t−1)

+
(
1− 1− (1− τ̂c,w)

Ns(c,w,t−1)

P̂
(s)
w (t)

)
Ns(c, w, t− 1)

1

τc,w − 1

)

+
∑

s∈S−c,w

∑
t∈T−c,w,s

Ns(c, w, t− 1)
1

τc,w − 1
= 0

⇒
∑

s∈S+
c,w

∑
t∈T+

c,w,s

(
1− (1− τ̂c,w)

Ns(c,w,t−1)

P̂
(s)
w (t)

Ns(c, w, t− 1)
1

1− (1− τc,w)Ns(c,w,t−1)

)
= Nc,w

Nc,w = N+
c,w +N−

c,w

N+
c,w =

∑
s∈S+

c,w

∑
t∈T+

c,w,s

Ns(c, w, t− 1)

N−
c,w =

∑
s∈S−c,w

∑
t∈T−c,w,s

Ns(c, w, t− 1).

(9)

Because the function

f(τc,w) =
∑

s∈S+
c,w

∑
t∈T+

c,w,s

(
1− (1− τ̂c,w)

Ns(c,w,t−1)

P̂
(s)
w (t)

Ns(c, w, t− 1)
1

1− (1− τc,w)Ns(c,w,t−1)

)
−Nc,w

is monotonic1, we can use the bisection method to get the

solution τc,w for f(τc,w) = 0. For our case, the starting

interval to solve for τc,w is set to [0, 1] satisfying the

condition f(0)f(1) ≤ 0. Since

f(1) =
∑

s∈S+
c,w

∑
t∈T+

c,w,s

(
1− (1− τ̂c,w)

Ns(c,w,t−1)

P̂
(s)
w (t)

Ns(c, w, t− 1)

)
−N+

c,w −N−
c,w

≤ N+
c,w −N+

c,w −N−
c,w

≤ 0.

lim
x→0

f(x) =∞,

the condition is thus satisfied.

The E-step and M-step repeat until convergence. The

detailed steps for learning the model is summarized in

Algorithm 1.

IV. EXPERIMENTS

A. Data Set

To evaluate the effectiveness of the proposed model, we

made use of the MemeTracker [27] dataset which can give

both the network structure for websites of news articles and

blog posts (red and blue points in Fig. 4) and cascades. The

data covers a period from August 1 2008 to April 30 2009.

Websites denoted by nodes are connected by directed

edges. A website A is assumed to have influence on another

site B if a post in B has mentioned a post in A. The

dataset contains 4 million nodes and 13 million edges. The

parent nodes of a node form multiple meaningful compo-

nents. For example, the website “ksat.com”, a local news

website for San Antonio, has parent websites grouped by

topics such as general news (“news.bbc.co.uk”, “cnn.com”),

business news (“economist.com”, “forbes.com”), sports

(“sports.espn.go.com”) and so on. Each group of websites

represents an information source. A website can be influ-

enced by different sources. To gain further insight about

the dataset, we randomly sampled 300, 000 websites, about

10 percent of the complete dataset. Among these web-

sites, 93, 675 (31.2%) websites have at least one parent. A

parent component is different from a parent node only if

it contains more than one nodes. And out of the 93, 675
websites, 49, 764 (53.1%) websites have at least two parent

components containing more than one node, which shows

that modelling structural diversity is meaningful for the

MemeTracker dataset.

1Note that (1 − τc,w)Ns(c,w,t−1) is monotonic because Ns(c, w, t −
1) log(1− τc,w) is monotonic.
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Algorithm 1 Incorporating Structural Diversity in ICM
Input: network G = (V,E), cascades D = {D1, · · · , DS}
Output: parent components {c} for each node w ∈ V ,

component-based diffusion probabilities θ = {τc,w}

Detect parent components {c} for each node w ∈ V
Assign initial values to θ̂ = {τ̂c,w}
for all (c, w) pairs do

N+
c,w ←

∑
s∈S+

c,w

∑
t∈T+

c,w,s
Ns(c, w, t− 1)

N−
c,w ←

∑
s∈S−c,w

∑
t∈T−c,w,s

Ns(c, w, t− 1)

if N+
c,w = 0 and N−

c,w �= 0 then
τc,w ← 0

end if //special cases for diffusion probabilities

end for
while not convergence do

E-step:

for all P̂ (s)
w (t) do

P̂
(s)
w (t)← 1−∏

c∈B(w)∩Ds(t−1)(1− τ̂c,w)
Ns(c,w,t−1)

end for
M-step:

for all (c, w) : S+
c,w �= ∅ do

calculate τc,w using the bisection method for function∑
s∈S+

c,w

∑
t∈T+

c,w,s

(
1−(1−τ̂c,w)Ns(c,w,t−1)

P̂
(s)
w (t)

Ns(c, w, t− 1) 1
1−(1−τc,w)Ns(c,w,t−1)

)
−Nc,w = 0.

end for
θ̂ ← θ

end while

Figure 4. A small part of the MemeTracker network [27].

B. Experimental Settings

While we considered all 4 million nodes in computing

the parent components, we evaluated only the diffusion

probabilities of 1, 000 randomly chosen nodes with non-

zero in-degree, and applied the algorithm to infer the dif-

fusion probabilities for their parents. Since the estimation

of the diffusion probabilities for each node is independent

given (9), we anticipate that similar results can be obtained

for the whole set of nodes, which will be evaluated in

the future. Also, we considered different number of cas-

cades (17500, 35000, 52500, 71568). For each setting, we

randomly divided the cascades into five folds and reported

the average performance based on five-fold cross-validation.

We compare our designed model with three different

versions of IC models, given as

• Model 1: The IC Model,

• Model 2: The IC Model with decay effect,

• Model 3: The IC model with decay effect and un-

weighted structural diversity, and

• Model 4: Our proposed model.

Model 1 is a baseline model which simply extends the

IC Model by considering parent nodes which are activated

after the latest activation of the child node instead of only the

last time step based on the intuition that readers are not only

interested in news just happened, but also those happened

some time ago. The number of parameters for each node in

Model 1 equals to the number of its parent nodes.

Model 2 extends Model 1 by considering decay of influ-

ence. One reason to consider the decay is that an activated

parent node with its first activation happening more recently

will be more influential compared to the parent nodes with

their first activations happening earlier. Using the same

exponential decay, we define F
(s)
a (v, w, t) for a parent node

v and its child node w in the sth cascade at time step t+1

as: F
(s)
a (v, w, t) = e−(t−T (s)

v (w,t))/α where T
(s)
v (w, t) is the

time of first activation of node v which falls in the interval

[L
(s)
w (t+1), t]. And thus we can define the weighted counting

Ns(v, w, t) = F
(s)
a (v, w, t). The number of parameters for

each node in Model 2 again equals to the number of its

parent nodes.

Model 3 extends Model 2 by grouping parent nodes based

on their community structure. Model 4 extends Model 3 by

considering the modularity measure as weighting for each

component. Thus, Model 3 differs from Model 4 by setting

F
(s)
b (c, w, t) = 1 instead of (4). The number of parameters

for each node in Model 3 and Model 4 equals to the number

of its parent components.

Here we used α = 1, 500 for all related models. Also,

according to [28], the diffusion probabilities found in real-

world datasets are quite small with mean 0.04 and standard

deviation 0.07. Thus we set initial assignments of θ̂ =
{τ̂c,w} within [0, 0.1] and we used the same set of values

for all models. To more accurately detect the neighbour

community structure, we considered nodes within two hops

instead of just the immediate neighbours.
We used perplexity to evaluate different models as the

ground-truth is unknown. Perplexity is commonly used
in the evaluation of language models [29]. It measures
the average probability of each word based on the trained
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Figure 5. Comparison of model accuracy in terms of perplexity.

model. For our case, the perplexity over the cascades is
here defined as

Perplexity =
−∑S

s=1
logP (Ds)

W
. (10)

P (Ds) is the probability for the sth cascade to be generated,

S is the total number of cascades, and the normalization

term W is the number of activations with the existence of

activations from parent components. A smaller perplexity

value indicates a higher average probability under the model,

and thus better performance.

C. Results

1) Generative Ability: Fig. 5 shows the average per-

plexity under five-fold cross validation for the four models

we previously described. For each model, we found that

the performance remains stable given the different num-

bers of cascades we tested. This shows that the difference

caused by different numbers of activations does not lead

to apparent difference in performance. Also, we found that

after considering decay, component structure and component

modularity measure, there was apparent improvement on the

performance. The comparable performance among Model 1,

Model 2 and Model 3 shows that considering only decay

and component structure alone cannot accurately model

diffusion. After adding component modularity which models

the structural properties in components, the performance was

significantly improved by a decrease in perplexity of 0.94.

This demonstrates that the structure diversity, modelled by

community structure, plays an important role in the diffusion

process and the community structure cannot be characterized

by the properties of individual neighbours alone. And after

adding modularity as weighting to each parent component,

our proposed model mimicked the phenomenon that parent

nodes within a more tightly connected component share

more information and thus provide more redundant informa-

tion. While the model with unweighted structural diversity

always regards the influence under all structures equally.

Figure 6. Comparison of run-time for the EM iterations.

2) Run-time: The run-time for the EM iterations mea-

sured in seconds under each model is shown in Fig. 6.

The maximum run-time for the four models were 121.64s,

351.59s, 58.96s and 36.40s respectively. After considering

decay, the run-time increased apparently because the bi-

section method needs a number of iterations to converge.

After further considering the parent components, the run-

time significantly decreased again because the number of

parent components is much smaller than the number of

parent nodes.

The total run-time performance for the four models is

shown in Fig. 7 where all the pre-computing steps are

included. The run-time was comparably longer because the

calculation of the weighted counting Ns(c, w, t) from the

activation logs is time-consuming. For the models with

parent components among larger numbers of cascades, al-

though the number of parent components is much smaller

than the number of parent nodes which reduces the run-

time, we observed yet some increase in run-time due to

the calculation of Ns(c, w, t) which involves integration of

nodes’ activations in each parent component. Note that as

mentioned above, the estimation of diffusion probabilities

θ = {τc,w} is independent given (9). Therefore, we can

estimate the diffusion probabilities in parallel, and the run-

time can then be scaled down by the number of processes

running at the same time.

V. CONCLUSION

In this paper, we proposed an extension of IC Model

which incorporates the community structure of nodes’ neigh-

bours for diffusion modeling. The EM algorithm is used to

estimate the model parameters. We compared the proposed

model with the benchmark models that do not consider

network structural properties. Our empirical result on a real

dataset shows that after incorporating structural diversity,

there is a significant improvement in the generative ability

of the proposed model. The new model can more accurately

model diffusion processes in social networks. Our work has
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Figure 7. Comparison of overall run-time.

a number of ways for enhancement. First, more structural

properties can be utilized and combined with the activation

logs. Second, it can be applied to enhance some network

analysis tasks (e.g., influence maximization) via the incor-

poration of the structural diversity.
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