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Abstract

Existing diffusion models for social networks of-
ten assume that the activation of a node depends
independently on their parents’ activations. Some
recent work showed that incorporating the struc-
tural and behavioral dependency among the parent
nodes allows more accurate diffusion models to be
inferred. In this paper, we postulate that the latent
temporal activation patterns (or motifs) of nodes of
different social roles form the underlying informa-
tion diffusion mechanisms generating the informa-
tion cascades observed over a social network. We
formulate the inference of the temporal activation
motifs and a corresponding motif-based diffusion
model under a unified probabilistic framework. A
two-level EM algorithm is derived so as to infer the
diffusion-specific motifs and the diffusion proba-
bilities simultaneously. We applied the proposed
model to several real-world datasets with signifi-
cant improvement on modelling accuracy. We also
illustrate how the inferred motifs can be interpreted
as the underlying mechanisms causing the diffusion
process to happen in different social networks.

1 Introduction

How information spreads from one node to another over on-
line social and information networks is well known to be
highly related to the influence between the nodes. In the lit-
erature, different diffusion models have been proposed and
the underlying diffusion networks can be inferred to explain
the observed information cascades [Goldenberg et al., 2001;
Lee et al., 2012; Goyal et al., 2010; Gomez-Rodriguez et al.,
2011]. Most of them share the assumption that the activa-
tion of a node is caused independently by its parents. This
assumption limits our understanding on how a node is influ-
enced by the interactions of its parent node activations. For
instance, sometimes people may not respond to discussions
of their so-so friends until an more influencial friend steps in.

The long-standing framework which associates the proba-
bility of adopting a behavior with multiple neighbors [Gra-
novetter, 1978; Jackson and Yariv, 2007] has recently been
observed also for the user engagement behavior in Facebook
[Ugander et al., 2012]. This notion was later on incorporated

into diffusion models for social networks [Bao et al., 2013],
where a component-based diffusion model was proposed in
which the influence on a node by its parents is exerted inde-
pendently by the connected components of the parents. In
[Bao et al., 2015], a set of inferred co-activation patterns of
the parents of each node are assumed to be independently ex-
erting their influence on the node, where the co-activation pat-
terns are assumed to be static in nature.

In this paper, we propose a diffusion model with the dy-
namic interaction patterns of nodes incorporated. Motifs, of-
ten defined as over-represented patterns, have widely been
applied for characterizing the structural and functional prop-
erties of sequential data (e.g., genomic DNA [Kim et al.,
2008]) and network data (e.g., [Milo et al., 2002]). We pos-
tulate that the information cascades over the whole network
are embedded with a common set of latent temporal acti-
vation patterns as the underlying interaction mechanisms of
the nodes causing the information to diffuse over the social
network. We propose a stochastic temporal activation motif
model to represent the temporal activation patterns, and thus
define a novel diffusion model based on the motifs. Also,
we assume that the motifs are attributed with social roles (as
in [Scripps et al., 2007]). We formulate the motif detection
problem and the diffusion network inference problem under
a unified probabilistic framework. A two-level EM algorithm
is derived so as to infer the diffusion-specific motifs and the
diffusion probabilities simultaneously. For performance eval-
uation, we apply the proposed model to three real-world so-
cial network datasets with significant improvement on mod-
elling accuracy compared with some recent work. We also
illustrate how the inferred temporal activation motifs can be
interpreted as the underlying interaction mechanisms causing
the diffusion to happen in different social networks.

To the best of our knowledge, this is the first work where
the identification of temporal activation motifs and the infer-
ence of the information diffusion network are solved within
a unified framework. Also, the temporal activation motifs
discovered are diffusion-specific ones, which also makes this
work unique compared to other motif detection work.

2 Related Work

Diffusion models have been studied for the past decade to
gain theoretical understanding of how information spreads
within social networks [Goldenberg et al., 2001; Lee et al.,
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2012; Goyal et al., 2010; Gomez-Rodriguez et al., 2011].
Two commonly used models are the Independent Cascade
(IC) model [Goldenberg et al., 2001] and the Linear Thresh-
old (LT) model [Kempe et al., 2005], which have also been
put under the unified framework of General Threshold and
Cascade Models [Kempe et al., 2003]. Point process models
such as Hawkes process diffusion models have recently been
proposed so as to model the inter-activation time [Yang and
Zha, 2013; Zhou et al., 2013; He et al., 2015]. Also, instead
of the conventional way to represent information spread as
cascade sequences, some recent work assumes that a cascade
takes the form of a tree [Sun et al., 2009]. Some also studied
how the diffusion processes in social networks are affected by
factors like the cascade structure, its size, and the roles of the
users involved [Anderson et al., 2015]. In parallel, the basic
IC model has also been extended to uncover temporal dynam-
ics [Lee et al., 2012], and to take continuous time [Goyal et
al., 2010] and et al.

Most of the extensions of the IC model still share the same
assumption that a node is influenced independently by any of
its parents. By exploring the structural and behavioral prop-
erties of neighboring nodes and their relationship with in-
formation diffusion, a component-based diffusion model was
recently proposed [Bao et al., 2013] where the influence of
the parent nodes to a node is not exerted individually but by
connected components of nodes. A structural diversity factor
was applied to each such component to quantify the infor-
mation redundancy. In [Zhang et al., 2013], a related notion
called social influence locality has been studied for model-
ing retweeting behaviors. In [Bao et al., 2015], a set of in-
ferred co-activation patterns of the parents of each node are
assumed to be independently influencing the node. To con-
trast, our proposed motif-based diffusion model makes con-
tribution to identifying latent temporal interaction patterns of
nodes which cause the information diffusion to happen in so-
cial networks.

Recently, network motifs have been applied to character-
ize online social networks [Liu et al., 2013]. However, to the
best of our knowledge, there does not exist work on infer-
ring application-specific motifs with social roles integrated.
In this paper, we adopt the roles defined in [Scripps et al.,
2007]. There also exist other definitions proposed in the lit-
erature, e.g., Pagerank Scores and Structural Hole Spanner
Scores [Fang and Tang, 2015].

3 A Motif-based Diffusion Model

In this section, we first present some key concepts needed
for defining the information diffusion modeling problem. In
particular, we make use of also social roles in our formula-
tion. Then, we present a stochastic temporal activation motif
model, followed by a corresponding diffusion model and a
two-level EM algorithms for the model learning.

3.1 Preliminaries

Social Network and Information Cascade

We represent a social network as a directed graph G = (V,E)

where V is the set of nodes and E is the set of edges. Let
e = (v, w) be an edge from node v to node w, and f(w)

and b(w) be the sets of child nodes and parent nodes of node
w respectively, given as: f(w) = {u : (w, u) 2 E} and
b(w) = {v : (v, w) 2 E}.

Let D
s

= {D
s

(0), D

s

(1) · · ·D
s

(T

s

)} be the s

th observed
information cascade where D

s

(t) is the set of nodes activated
at time step t and T

s

is the final time step for the cascade D
s

.

Social Role

In our model, we assume that each node v carries a social
role R(v) := {r1, ...rn} based on [Scripps et al., 2007]. In
particular, there are four different social roles, namely ambas-
sadors, big fish, bridges and loners, defined based on the local
structural information of different nodes. Ambassadors have
both high degrees and many connections to different com-
munities, representing the ones with high global influence.
Big fish (big fish in a small pool) have high degrees but con-
nections to only a limited number of communities, standing
for those with high local influence, like leaders in a small
research field. Bridges have low degrees but are connected
to many communities, playing the roles of bringing knowl-
edge exchange among communities although not influential.
Meanwhile, loners have both lower degrees and less connec-
tions to different communities, representing the ones being
alone. By adopting these roles, we can then try to discover
and see if there exist patterns characterizing how discussions
are developed via the interactions of the roles. In general,
other role definitions can also be used according to the spe-
cific need of analysis.

Activation Sequence and Subsequence

Diffusion models for social networks explain how the acti-
vations of some user nodes makes influence on their neigh-
bors so that they will activate as well. Given that in the
s

th cascade, assume that a node w is activated at time t and
t � L

s

(w, t) consecutively where L

s

(w, t) is defined as the
interval between the latest activation of the node w prior to
time step t in the s

th cascade. To explain the activation
of w at t, the set of activations being considered are those
found in b(w) (parents of w) and activated in the time interval
[t� L

s

(w, t), t]. The activations are then sorted in ascending
order, each tagged with a pre-computed social roles to form a
particular temporal activation sequence for node w.

In addition, we make the conjectures that (i) there exist
temporal subsequence patterns embedded in the set of tem-
poral activation sequences for all nodes in G and that (ii) the
parent activations even though sorted in time may not neces-
sarily mean that they happen in response to each other one by
one exactly according to the temporal order. We thus sample
subsequences from a temporal activation sequence by group-
ing adjacent activations happening within a pre-set �t in an
overlapping manner. We implement a depth-first search with
a First-In First-Out stack. We first push all the individual ac-
tivations in a temporal activation sequence (each as a subse-
quence candidate) into the stack. Then, we pop a subsequence
candidate X from the stack. Suppose x

i

is the last activation
in the candidate X . We search for the activation x

j

happen-
ing later than x

i

in the original activation sequence. If such
x

j

can be found and happens within a �t time window, we
will add x

j

to the end of X and push the new subsequence
candidate into the stack again. Otherwise, the candidate will
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be finalized. The process repeats until there are no more can-
didates in the stack. We can also set a limit on the maximum
number of activations allowed for a subsequence as l. In the
sequel, we denote the corresponding set of subsequences for
node w observed at time t in the s

th cascade as X(s)
w

(t).

3.2 Formulation

To formulate a motif-based diffusion model under a proba-
bilistic framework, we first define a stochastic temporal acti-
vation motif to represent the patterns of the aforementioned
activation subsequence.

Temporal Activation Motif

Let M = {M1, . . . ,Mk

} be a set of k stochastic temporal
activation motifs, which are parameterized as a set of prob-
ability matrices ⇥ = {⇥1, . . . ,⇥k

}. In particular, ⇥
m

=

(✓

m

ij

)

n⇥n

is defined so that ✓m
ij

is the probability of transiting
from role r

i

to role r

j

as represented in the m

th motif where
n is the number of social roles. The probability that a partic-
ular subsequence h 2 X

(s)
w

(t) is generated by the m

th motif
is given as:

p(h|⇥m) = uh1

lhY

t=2

nY

i=1

e

h
i (t� 1)

nY

j=1

(✓

m
ij )

ehj (t)
(1� ✓

m
ij )

(1�ehj (t))

where 0  ✓

ij

 1, 1  m  k, u
h1 denotes the initial

probability of observing the first element of the subsequence
h. e

h

i

(t) is an indicator which will be 1 if h

t

= r

i

where
h

t

is the t

th element in h. Also, a background model M0

is used to account for subsequences of activations which may
happen at random. For simplicity, we compute the probability
of generating h by M0 as

Q
t

p(h

t

), where p(h
t

) is estimated
as N

r

/N

total

if h
t

= r, where N
r

and N

total

denote the total
number of activations with role r and the total number of all
activations respectively.

Motif-based Information Diffusion

For a node to be influenced by a set of parent nodes caus-
ing information diffusion, we postulate that it is the interac-
tion patterns of the parent node activations (i.e., the tempo-
ral activation motifs) which form the underlying mechanisms.
Therefore, we assume that each subsequence of parent node
activations will contribute to the probability that one of the
motifs is in effect. And given a particular motif and a partic-
ular node, we define the corresponding motif-based diffusion
probability.

We denote ⌧

m,w

= p(w = 1|⇥
m

) as the motif-based dif-
fusion probabilities between M

m

and a node w, and the prior
probabilities of the M

m

as ↵
m

= p(⇥

m

). The diffusion pro-
cess of a particular cascade proceeds as follows. Given the
initial set of activated nodes in the s

th cascade (D
s

(0)), we
assume that each of them tries to activate its child nodes. For
each such child node w, the probability that it will be acti-
vated by a subsequence h 2 X

(s)
w

(t) is then given as:

p(w(s, t+ 1)|h)

=

kX

m=0

p(w|⇥
m

)p(⇥

m

|h) =
kX

m=0

⌧

m,w

↵

m

p(h|⇥
m

)/p(h).

With the independency assumption that node w will be ac-
tivated if at least one of those subsequences succeeds, the
probability for w to activate at time step t+ 1 in the s

th cas-
cade is given as:

p(w(s, t+ 1)|X(s)
w

(t))

= 1�
Y

h2X

(s)
w (t)

(1� p(w(s, t+ 1)|h)).

The diffusion process proceeds until there are no more nodes
being activated and the cascade stops.

The likelihood function of the set of observed cascades
{D

s

} is then given as:

L(⇥) =

SX

s=1

logP (Ds|⇥, Ds(0))

=

SX

s=1

Ts�1X

t=0

✓ X

w2Ds(t+1)

log p(w(s, t+ 1)|X(s)
w (t))

+

X

w 62Ds(t+1)

X

h2X
(s)
w (t)

log(1� p(w(s, t+ 1)|h))
◆
.

3.3 Learning Algorithms

To infer the latent temporal activation motifs and the diffu-
sion probabilities simultaneously, we propose a two-level EM
algorithm to maximize the likelihood function L(⇥) with re-
spect to the parameters ⇥ = {{⌧

m,w

= p(w|⇥
m

)}, {↵
m

=

p(⇥

m

)}, {⇥
m

}}. The inferred temporal motifs will be those
making the information diffusion mostly likely to happen.

First level EM

Let I
h,m

be a latent variable that takes the value of 1 when
a parent subsequence h belongs to the latent pattern m, and
0 otherwise, given the constraint

P
k

m=0 Ih,m = 1. Let I =

{I
h,m

} denote the whole set of the latent variables. If we
assume that I is known, the complete likelihood function can
be written as:

P (D, I|⇥) = P (D|I,⇥)P (I|⇥)

where

P (I|⇥)

=

SY

s=1

Ts�1Y

t=0

✓Y

w

Y

h2X
(s)
w (t)

kY

m=0

�
↵mp(h|⇥m)/p(h)

�Ih,m

◆

and

P (D|I,⇥) = L(⇥|I)

=

SX

s=1

logP (Ds|⇥, Ds(0), I)

=

SX

s=1

Ts�1X

t=0

 
X

w2Ds(t+1)

log p(w(s, t+ 1), I|X(s)
w (t))

+

X

w 62Ds(t+1)

X

h2X
(s)
w (t)

log(1�
kX

m=0

Ih,m⌧m,w)

!
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where

p(w(s, t+ 1), I|X(s)
w (t)) = 1�

Y

h2X
(s)
w (t)

(1�
kX

m=0

Ih,m⌧m,w).

As I is missing in most of the cases, we can do the E-step
by first computing the posterior probabilities of I with the
current parameter estimates ⌧̂

m,w

= p(w|ˆ⇥
m

), ↵̂
m

= p(

ˆ

⇥

m

)

and ˆ

⇥

m

, given as

⌘h,m =P (Ih,m = 1|w, h, ⇥̂) =

p(w|ˆ⇥m)p(

ˆ

⇥m|h)Pk

m=0
p(w|ˆ⇥m)p(

ˆ

⇥m|h)

=

⌧̂m,w↵̂mp(h|ˆ⇥m)Pk

m=0
⌧̂m,w↵̂mp(h|ˆ⇥m)

.

Note that for the case when w is not activated, we substitute
⌧̂

m,w

with (1� ⌧̂

m,w

) for ⌘
h,m

. Then, the expected likelihood
function can be defined as:

Q(⇥| ˆ⇥)

=

SX

s=1

Ts�1X

t=0

⇣ X

w2Ds(t+1)

EI [log p(w(s, t+ 1), I)|X(s)
w (t)]

+

X

w 62Ds(t+1)

X

h2X
(s)
w (t)

kX

m=0

⌘h,m log(1� ⌧m,w)

+

X

w

X

h2X
(s)
w (t)

kX

m=0

⌘h,m log

�
↵mp(h|⇥m)/p(h)

�⌘
. (1)

For the M-step, we maximize Q(⇥| ˆ⇥) by taking the deriva-
tive of Q with respect to ⇥ to obtain the updating rule of the
model parameters.

To update {↵
m

}, according to the Lagrange multiplier
method, maximizing Q(⇥| ˆ⇥) with constraint

P
k

m=0 ↵m

=

1 yields

@

⇣
Q(⇥| ˆ⇥)� �(

kX

m=0

↵m � 1)

⌘
/@↵m = 0.

Thus, 8↵
m

P
S

s=1

P
Ts�1
t=0

P
w

P
h2X

(s)
w (t)

⌘h,m

↵m
� � = 0.

Then it can be easily shown that

↵m =

PS

s=1

PTs�1

t=0

P
w

P
h2X

(s)
w (t)

⌘h,m

PS

s=1

PTs�1

t=0

P
w

P
h2X

(s)
w (t)

1

.

To update {⇥
m

}, we consider p(h|⇥
m

), and

@

⇣ SX

s=1

Ts�1X

t=0

X

w

X

h2X
(s)
w (t)

kX

m=1

⌘h,m

lhX

t0=2

nX

i=1

e

h
i (t

0 � 1)

nX

j=1

�
e

h
j (t

0
) log ✓

m
ij + (1� e

h
j (t

0
)) log(1� ✓

m
ij )
�⌘

/@✓

m
ij = 0.

Therefore,
✓

m
ij =

PS

s=1

PTs�1

t=0

P
w

P
h2X

(s)
w (t)

⌘h,m

Plh
t0=2

e

h
i (t

0 � 1)e

h
j (t

0
)

PS

s=1

PTs�1

t=0

P
w

P
h2X

(s)
w (t)

⌘h,m

Plh
t0=2

e

h
i (t

0 � 1)

,

where m 6= 0. Since p(h|⇥0) is estimated as constant, there
is no corresponding parameters for m = 0.

To update {p(w|⇥
m

)}, setting to zero the derivative for the
first term E

I

[log p(w(s, t+1), I|X(s)
w

(t))] in Eq.(1) does not
have a simple solution. So, within this M-step, we introduce
another level of the EM algorithm.

Second level EM

Let Y (s)
h,w

(t) denote a latent variable that indicates whether
the activation of a node w at time step t in the s

th cascade
is due to w’s parent subsequence h or not. We further define
Y

s

= {Y
s

(0), Y

s

(1) · · ·Y
s

(T

s

)} where Y

s

(t) := {Y (s)
h,w

(t)}
represents the set of latent variables corresponding to the ac-
tivations at time step t in the s

th cascade. Then, we compute
the posterior probability of Y (s)

h,w

(t), given as
�h,w,s,t =P (Y

(s)
h,w(t+ 1) = 1|w, {⌘h,m}, ⇥̂)

=

Pk

m=0
⌘h,m⌧̂m,w

p̂(w(s, t+ 1)|X(s)
w (t))

where ⌧̂

m,w

stands for the current estimate of ⌧
m,w

, and

p̂(w(s, t+ 1)|X(s)
w (t)) = 1�

Y

h2X
(s)
w (t)

(1�
kX

m=0

⌘h,m⌧̂m,w).

The corresponding Q0 function can then be defined as
Q0

(⇥| ˆ⇥)

=

SX

s=1

Ts�1X

t=0

 
X

w2Ds(t+1)

X

h2X
(s)
w (t)

kX

m=0

⌘h,m

�
�h,w,s,t log ⌧m,w + (1� �h,w,s,t) log(1� ⌧m,w)

�

+

X

w 62Ds(t+1)

X

h2X
(s)
w (t)

kX

m=0

⌘h,m log(1� ⌧m,w)

+

X

w

X

h2X
(s)
w (t)

kX

m=0

⌘h,m log

�
↵mp(h|⇥m)/p(h)

�
!
.

We define T

+
w,s

as the set of time steps {t} with reference
to the s

th cascade satisfying the condition that node w is
activated at time step t + 1 and at least one of its parents
have been activated since t � L

s

(w, t). Meanwhile, T�
w,s

is
the set of time steps {t} where node w is not activated at
t+ 1, but at least one of its parents have been activated since
t � L

s

(w, t). Moreover, we define a set of cascades where
T

+
w,s

is not empty as S

+
w = {Ds : 9t

�
X

(s)
w (t) 6= ; ^ w 2

Ds(t+1)

�
}, and a set of cascades where T�

w,s

is not empty as
S

�
w = {Ds : 9t

�
X

(s)
w (t) 6= ; ^ w 62 Ds(t+ 1)

�
}.

Then @Q/@⌧

m,w

= 0 yields:

⌧m,w =

1

N

+
m,w +N

�
m,w

X

s2S+
w

X

t2T+
w,s

X

h2X
(s)
w (t)

⌘h,m�h,w,s,t

N

+
m,w =

X

s2S+
w

X

t2T+
w,s

X

h2X
(s)
w (t)

⌘h,m

N

�
m,w =

X

s2S�
w

X

t2T�
w,s

X

h2X
(s)
w (t)

⌘h,m.
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4 Experiments

We compare our model with some recently proposed diffu-
sion models using three real-world social and information
network datasets.

4.1 Experimental Settings

We compare our model (abbreviated as Motif-IC) with the
basic IC model, a component-based IC model (abbreviated
as COMP-IC [Bao et al., 2013]) and a co-activation pattern
based IC model (abbreviated as LCM-IC [Bao et al., 2015]).
The two variants of the IC models are chosen for comparison
as both considered structural and behavioral dependency of
the parent nodes. For all three models, we allow a node to
be activated multiple times in a single cascade for fair perfor-
mance comparison.

For all the experiments performed, the initial values of
{⌧̂

m,w

} are within [0, 0.1] as the diffusion probabilities in
real data are known to be very small (e.g., with a mean value
of 0.04 and standard deviation of 0.07 [Gruhl et al., 2004]).
The initial values of {ˆ✓m

ij

} are generated within [0, 1]. And
the initial values of ↵

m

are generated within [0, 1] satisfyingP
m

↵̂

m

= 1. Also, for COMP-IC, LCM-IC and Motif-IC,
we obtain the optimal number of model components using
the cross-validation method.

As the ground-truth is unknown for real data, we use per-
plexity as the metric for performance evaluation. The per-
plexity over a set of observed cascades is defined as

Perplexity =

�
PS

s=1
lnP (Ds)

W

,

where P (D

s

) is the probability for the sth cascade to be gen-
erated, and W is the number of activations due to the influ-
ence of the corresponding nodes’ parents. A smaller perplex-
ity value indicates the inferred model to be more accurate,
and thus better performance. Also, five-fold cross-validation
is adopted to avoid experimental bias.

4.2 Performance Evaluation

Three real datasets are used for the evaluation, namely Meme-
Tracker [Leskovec et al., ], Digg [Lerman and Ghosh, 2010]
and Flixster [Jamali and Ester, 2010] where both the network
structure and the information cascades are available. (i) The
MemeTracker dataset records the posts of mass media and
weblogs from August 1 2008 to April 30 2009. Websites
with news articles and blog posts are modeled as nodes which
are further connected by directed edges (hyperlinks). It con-
tains 4 million nodes, 13 million edges, and 71, 568 cascades.
Each cascade is defined based on a set of posts reporting the
same event. (ii) The Digg dataset records the story voting
process under a directed friendship network over one month
in 2009. Users are modeled as nodes and following relations
are modeled as edges. It contains 280k nodes, 2.6 million
edges and 3, 553 cascades. Each cascade is defined based on
a particular frequently voted story. (iii) The Flixster dataset
records the movie rating process under an undirected friend-
ship network of users over a period from November 2005 to
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Figure 1: Performance comparison on three real datasets.

November 2009. Users are modeled as nodes and friend re-
lations are modeled as edges. It contains 787k nodes and 5.9

million edges. We select 5, 318 cascades for the frequently
rated movies in the dataset.

Figure 1 shows the experimental results. For all the three
datasets, the proposed Motif-IC model achieves the best per-
formance consistently. Compared with COMP-IC and LCM-
IC, Motif-IC results in decreases in perplexity by 0.69 and
0.09 respectively for MemeTracker, by 2.06 and 0.40 for
Digg, and by 0.19 and 0.04 for Flixster. The optimal number
of motifs, k, is found to be 5 for MemeTracker, 5 for Flixster,
and 15 for Digg. The basic IC Model has much worse perfor-
mance and thus the result is not shown in the figure.

4.3 Discussion on the Inferred Motifs

The temporal activation motifs of parent nodes ⇥

m

inferred
from the three datasets are reported in Figures 2, 3 and 4. The
roles of Ambassador, Big Fish, Bridge, and Loner are indi-
cated as “A”, “BF”, “B” and “L” respectively. We show only
two motifs with the highest value for their mixing portions
due to the page limit.

Table 1: Representative websites for each role in Meme-
Tracker.

Role Representative websites

Ambassador news.bbc.co.uk
galvestondailynews.com

(covering various topics) articlesbase.com

Big Fish climateark.org
waugh.standard.co.uk

(featuring specific domains) funkmysoul.gr

Bridge ronsen.org
threadden.com

(news of several domains) merchantlaw.com

Loner humppazoid.blogspot.com
matthewkeegan.com

(weblog sites) dpwriters.wordpress.com

For the Digg and Flixter datasets, the interpretation of the
social roles is straight-forward based on the role definitions.
For the MemeTracker dataset, Ambassadors are referring to
the websites covering various topics (e.g., news.bbc.co.uk a
major news media). Big Fish are referring to the websites
featuring specific domains (e.g., climateark.org that publishes
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Figure 2: Examples of temporal activation motifs for Meme-
Tracker dataset.
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Figure 3: Examples of temporal activation motifs for Digg
dataset.

news about climate). Bridges are referring to the websites
covering news of several domains (e.g., merchantlaw.com
containing business laws in several practice areas like agri-
culture law and so on). The weblog sites often turn out to
be Loners (e.g., humppazoid.blogspot.com). Some examples
can be found in Table 1.

In the following, we provide interpretations on the inferred
motifs as diffusion mechanisms:

MemeTracker-Motifs: Referring to Figure 2, we can in-
terpret MemeTracker-Motif 1 as the pattern of first starting
with a posting at some famous websites (e.g., major news
media) and then following up again by famous websites, with
occasional starts at some domain specific websites and then
picked up by famous websites afterwards. MemeTracker-
Motif 2 is another pattern with some posting interactions
among weblogs before it is being picked up by some fa-
mous websites. There is the possibility that MemeTracker-
Motif 1 accounts for the diffusion of major news, while
MemeTracker-Motif 2 accounts for the diffusion of news of
some more specific topics which gain momentum of diffusion
within the weblogs at the earlier stage.

Digg-Motifs: According to Figure 3, Digg-Motif 1 reveals
a pattern that the globally reputable users starting the vot-
ing and then followed by also other reputable users, again
with occasional starting votes from users of other types and
then being followed by reputable users. Digg-Motif 2 refers
to a pattern with occasional starts by big fish users and the
voting process is retained among the big fish before the rep-
utable users react. So, the first motif may refer to story vot-
ings among the circle of reputable users, while the second one
may refer to story votings first among big fish users and got
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Figure 4: Examples of temporal activation motifs for Flixster
dataset.

spread also to reputable users. A user in principle can respond
differently to these different mechanisms.

Flixster-Motifs: According to Figure 4, Flixster-Motifs 1
and 2 are more different from those inferred from the other
two datasets. In particular, there is a much higher chance
of transiting from globally reputable movie lovers to other
types of users, and that there is a much higher chance that
the movies are kept being evaluated within big fish, bridge,
or loner circles. This could be because views on movies are
more personal, resulting in more diverse parent activation pat-
terns (instead of globally dominated by some users).

Note that in order to further validate the insights gained
from the inferred motifs as discussed, more in-depth analy-
sis and evaluation efforts will be needed. However, we be-
lieve that the inferred patterns form new hypotheses which
are data-driven and worth further investigation for deepening
our understanding on user behaviors and information diffu-
sion in large-scale social networks.

5 Conclusion

In this paper, we proposed a novel motif-based diffusion
model for social networks and a corresponding learning al-
gorithm to infer both the latent temporal activation motifs
as well as the diffusion model under a unified framework.
The empirical results carried out on a number of real-world
datasets consistently show that the proposed model achieves
a higher modeling accuracy compared with a number of re-
cently proposed models. Also, we have shown how the in-
ferred temporal activation motifs can be interpreted as the un-
derlying interaction mechanisms for the diffusion to happen
in different social and information networks.

Possible extensions of this work may include fusing multi-
modal information in the cascades to infer more informative
“colored” motifs. Also, the stochastic motif models can be
further extended to increase its representation power. In gen-
eral, we believe that this work provides a bridge between
work of diffusion modeling and motif-based network charac-
terization. Both have been used to support different social sci-
ence related studies. Bridging them implies that it opens up
a number of new opportunities. For instance, it will be inter-
esting to perform careful studies to evaluate how the inferred
diffusion specific motifs are related to the different types of
events happening in social networks under different topics of
concern. In addition, how each user responds to different ac-
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tivation motifs can also be studied to achieve better user char-
acterization and influence maximization.
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