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Abstract—Different diffusion models have been proposed in
previous literature to model information diffusion, in which
each node is often assumed to be independently influenced
by its parents. More recently, some have begun to challenge
this assumption based on the observation that structural
and behavioral dependency among the parent nodes exerts
a notable role in diffusion within networks. In this paper,
we postulate that a node is independently influenced by a
set of latent co-activation patterns of its parents, instead
of the parents directly. We integrate the latent class model
with the conventional independent cascade model where each
latent class corresponds to a particular co-activation pattern
of the parent nodes. Each parent activation is essentially first
“projected” onto the latent space and then “reconstructed”
before exerting its influence onto the child nodes. The co-
activation patterns are to be inferred based on the information
cascades observed without using the connectivity related cues
except the information of direct parents. We formulate the
co-activation pattern identification problem and the diffusion
network inference problem under a unified probabilistic frame-
work. A two-level EM algorithm is derived for inferring the
model parameters. We applied the proposed model to a meme
dataset and two social network datasets with promising results
obtained. Using the results obtained based on the meme dataset,
we also illustrate how the identified co-activation patterns can
support the analysis of dependency among online news media.

I. INTRODUCTION

Online social and information networks exploit the influence
of neighbors to achieve information spreading. For instance,
social networking sites like Google+, Facebook and Twitter
allow their connected users to share views and information,
which have now become major marketing platforms. Also,
for mass media, the mainstream media outlets are increasing-
ly scanning blogs and other online sources for news items,
citing the links to weblogs in their websites and even hosting
their own blogs.

With the objective to better our understanding on how
information diffuses to exert influence in such online social
and information networks, various diffusion models have
been proposed in the literature [1, 2, 3, 4]. Early studies
of diffusion built on the Independent Cascade (IC) model
[1] which posits that an infected node infects each of its
neighbors independently with some chosen probability. In
contrast with the long-standing framework which associates
the probability of adopting a behavior with the number

of network neighbors already adopting [5] [6], Ugander
et al. found that the user engagement in Facebook was
affected by the connected components of users instead of
the individual users in the contact neighborhood [7]. Bao et
al. [8] proposed a component-based diffusion model which
assumes that the influence of the parent nodes to a child
node in a social network is not exerted individually but by
connected components, and the validity of the assumption
was supported by the empirical results when compared
with the IC model based on a meme dataset. In short, for
a more accurate diffusion model, the dependency of the
parent nodes’ activations should be considered. In this paper,
we consider in particular the co-activation patterns of the
parents for each node.

To that end, we postulate that the activation of a node is
caused by a set of latent co-activation patterns of its parent
nodes, and propose to integrate the latent class model (LCM)
[9] into the conventional IC model for modeling the co-
activation patterns. Under the proposed LCM-IC model, each
parent’s activation is first “projected” onto the latent space
and then “reconstructed” before exerting its influence to the
child node. Using latent variable models has been found
effective to capture hidden patterns embedded in the data
with missing values and noise. Applications include topic
modeling [9] and collaborative filtering [10]. We here adopt
it for diffusion modeling.

In this paper, we assume only the knowledge of direct
parents for each node and the cascade information to in-
fer the LCM-IC diffusion model. We formulate the co-
activation pattern identification problem and the diffusion
network inference problem under a unified probabilistic
framework. The maximum likelihood approach is adopted to
infer simultaneously the latent co-activation patterns and the
diffusion probabilities. A two-level EM algorithm is derived
for the inference. For performance evaluation, we apply the
proposed model to both synthetic and a number of real social
network datasets. Other than the objective of achieving a
more accurate diffusion model, we use online news media
as an example to illustrate how the inferred co-activation
patterns provides insights in practice to support quantitative
analysis of influence among the nodes in an information
network.
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The main contributions of this work are highlighted as
follows: (1) To the best of our knowledge, this is the first
work where the identification of co-activation patterns of
parent nodes and the inference of the overall information
diffusion network are solved within a unified framework
solely based on information cascades and the knowledge of
direct parents. (2) The proposed LCM-IC diffusion model
allows the co-activation patterns to be discovered, and the
positive empirical results obtained further hints the impor-
tance of considering the dependency among the parent nodes
for diffusion modeling. (3) We demonstrate in detail how the
proposed model with the consideration of the co-activation
patterns can be applied to support dependency analysis of
different online news media.

The remainder of this paper is organized as follows.
Section II presents some related work. Section III gives the
detailed formulation of our proposed model, followed by the
EM algorithm for the model learning. Experimental results
and related discussion can be found in Section IV. Section V
concludes the paper and provides pointers for future work.

II. RELATED WORK

Diffusion modeling has been researched extensively for
the past decades, with a view to furthering theoretical un-
derstanding of how information spreads and exerts influence
within online networks [1, 2, 3, 4]. Two commonly used
models are the Independent Cascade (IC) model [1] and
the Linear Threshold (LT) model [11]. The IC model [1]
allows a node to be activated independently by any of
its parents, while the LT model [11] assumes whether a
node will be activated depends on the aggregation of the
parents’ activations. Both models have been further extended
since they were first proposed. For instance, the IC model
has been extended to uncover temporal dynamics [2], and
to take continuous time [3]. Bao et al. [8] proposed a
component-based diffusion model which assumes that the
influence of the parent nodes to a child node is not exerted
individually but by connected components. A community
detection algorithm was applied to the neighborhood of each
node to identify the underlying components and a structural
diversity factor was also considered. In [12], a related notion
called social influence locality has been studied for modeling
retweeting behaviors. In the literature, studies on the rela-
tionship between the structural and behavioral properties of
node neighbors and information diffusion is still rare. There
have been works where the information cascades were used
to detect global communities [13, 14]. However they focus
on first grouping all individuals into global communities and
then modeling influence among the communities, and thus
are different from our work.

Our consideration of the parent nodes’ co-activation be-
haviors has some overlap with the social circle detection
problem [15]. Researchers [15, 16] have proposed algorithm-
s to detect social circles by analyzing the users’ profiles

and generated contents. Under the context of social circle
detection, this work aims to infer the “social circles” in the
contact neighborhood of each user according to the friends’
co-activation patterns.

Our work is also related to the studies analyzing the
credibility of web/blog sites in a hyperlink structure. Hy-
perlinks as connections represent networks among people
or organizations, and thus are often interpreted as the social
or communication structure among those social actors. In
the diffusion network of the new news ecosystem, through
a hyperlink, an individual web/blog site plays the role of an
actor who could influence other website’s perceived credi-
bility [17]. Most of the related works analyze the incoming
and outgoing links of the sites in the hyperlink structure
[18]. As hyperlinks could be created with different reasons,
the use of information cascades observed over the network
as presented in this work could provide more evidence to
better capture the influence related structure, as detailed in
Section IV-E.

III. A DIFFUSION MODEL WITH CO-ACTIVATION
PATTERNS INCORPORATED

In this section, we present a novel diffusion model where
the co-activation patterns of the parents are incorporated for
each node. Our conjecture is that parent nodes which often
co-activate before the activation of a node should implicitly
hint some underlying reason causing that, and detecting such
latent parent co-activation patterns can better our understand-
ing on the hidden reasons causing the underlying diffusion
behaviors in social and information networks. For instance,
recent postings of some friends with similar political views
as yours may cause you to put forward their views via the
information network. Also, postings of friends of different
nationalities may get your attention on some international
news. To formulate the proposed model, we integrate the
latent class model and the conventional IC model as a
unified one to represent the co-activation patterns and the
pattern-based information diffusion. In the following, we
present the mathematical notations and the formulation of
the model, followed by a two-level EM algorithm for the
model learning.

A. Preliminaries

We represent a social network as a directed graph G =
(V,E) where V is the set of nodes and E is the set of edges.
Let e = (v, w) be an edge from node v to node w, and f(w)
and b(w) be the sets of child nodes and parent nodes of
node w respectively, given as: f(w) = {u : (w, u) ∈ E}
and b(w) = {v : (v, w) ∈ E}. For each node w, we
assume that its activation depends on Nz(w) different latent
co-activation patterns of its parent nodes b(w). We denote
by zw ∈ {1, ..., Nz(w)} the index to the latent patterns.
For each parent node v ∈ b(w), we denote the probabilities
that node v belongs to the Nz(w) different latent patterns
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Figure 1: An illustration of the pattern-based diffusion model.

as Πv,zw = {πv,zw=1, . . . , πv,zw=Nz(w)} where πv,zw is
the probability of the parent node v being assigned to
the latent co-activation pattern zw,

∑
zw πv,zw = 1 and

∀zw(πv,zw ≥ 0). In this paper, we assume the co-activation
patterns to be static, leaving the modeling of evolving co-
activation patterns as our future work.

B. Formulation

Given the latent co-activation patterns as defined for w,
we further define for each pattern a pattern-based diffusion
probability τzw ,w with 0 ≤ τzw,w ≤ 1. That is when any
node belonging to pattern zw is “activated” (e.g., making
a post online) at time t, there will be a probability τzw ,w

that node w will then be activated by the pattern zw. In
addition, as in [2, 3], we allow an activated parent node to
make influence via the latent patterns on node w multiple
times within a short period after time t. Figure 1 shows an
illustration of the proposed model. In the figure, three co-
activation patterns are highlighted, each corresponding to
some specific co-activating parent nodes. The probabilities
of each node to belong to the three patterns are shown in the
bar chart next to each node. Note that we allow the patterns
to overlap and that the patterns are node specific.

Using the proposed pattern-based diffusion model, the
diffusion process of a particular cascade proceeds as follows.
Let Ds = {Ds(0), Ds(1) · · ·Ds(Ts)} be the sth observed
information cascade where Ds(t) is the set of nodes activat-
ed at time step t and Ts is the final time step for the cascade
Ds. Given the initial set of activated nodes in the sth cascade
(Ds(0)), we assume that each of them tries to activate its
child nodes. Note that we assume a parent node to be able
to activate its child node not just for the next immediate
time step but also the subsequent ones up to a limit. To
explain that, we define Cs(w, t) as the set of nodes which
have at least one activation within the interval between the
latest activation of the node w in the sth cascade denoted
as L

(s)
w (t+1) and the time step t. This assumes that we are

only interested in recent news and that the posts earlier than
our latest post have little influence on our future posting

behaviour. b(w)∩Cs(w, t) then gives the subset of Cs(w, t)
which are parents of w.

Thus, the probability of a parent node v to activate its
child node w p(v|w) becomes an expected value of the
diffusion probabilities {τzw ,w} over all the latent patterns
based on {πv,zw}, that is p(v|w) =∑Nz(w)

zw=1 πv,zwτzw ,w.
Then, the probability that the child node w will be

activated at time t + 1 is given as: P
(s)
w (t + 1) =

1−∏v∈b(w)∩Cs(w,t)(1−
∑Nz(w)

zw=1 πv,zwτzw,w), and whether
node w will be activated is determined accordingly. The
process proceeds until there is no more node being activated
and the cascade will stop.

The likelihood function of the observed cascades D s can
thus be formulated as:

L(θ) =

S∑
s=1

logP (Ds|θ, D(s)
0 )

=

S∑
s=1

Ts−1∑
t=0

( ∑
w∈Ds(t+1)

logP (s)
w (t+ 1)

+
∑

w �∈Ds(t+1)

∑
v∈b(w)∩Cs(w,t)

log(1−
Nz(w)∑
zw=1

πv,zwτzw,w)

)
.

C. Learning Algorithm

We propose a two-level EM algorithm to maximize the
likelihood function L(θ) with respect to the parameters θ =
{{τzw,w}, {πv,zw}} to infer the latent co-activation patterns
and the diffusion probabilities.

1) First level EM: Let Iv,zw be a latent variable that takes
the value of 1 when a parent node v of a node w belongs to
the latent pattern zw, and 0 otherwise, given the constraint∑Nz(w)

zw=1 Iv,zw = 1. Let I = {Iv,zw} denote the whole set
of the latent variables. If we assume that I is known, the
complete likelihood function can be written as:

P (D, I |θ) = P (D|I,θ)P (I |θ)
where

P (I |θ) =
∏
w∈V

∏
v∈b(w)

Nz(w)∏
zw=1

π
Iv,zw

v,zw

and

P (D|I,θ) = L(θ|I)

=

S∑
s=1

logP (Ds|θ, D(s)
0 , I)

=

S∑
s=1

Ts−1∑
t=0

( ∑
w∈Ds(t+1)

logP (s)
w (t+ 1, I)

+
∑

w �∈Ds(t+1)

∑
v∈b(w)∩Cs(w,t)

log(1−
Nz(w)∑
zw=1

Iv,zwτzw,w)

)
.

As I is missing in most of the cases, we can do the E-step
by first computing the posterior probabilities of I with the
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current parameter estimates τ̂zw ,w and π̂v,zw , given as

ηv,zw = P (Iv,zw = 1|w, θ̂) =
τ̂zw,wπ̂v,zw∑Nz(w)

zw=1
τ̂zw,wπ̂v,zw

.

Then, the expected likelihood function can be defined as:

Q(θ|θ̂)

=

S∑
s=1

Ts−1∑
t=0

( ∑
w∈Ds(t+1)

EI [log P
(s)
w (t+ 1, I)]

+
∑

w �∈Ds(t+1)

∑
v∈b(w)∩Cs(w,t)

Nz(w)∑
zw=1

ηv,zw log(1− τzw,w)

)

+
∑
w∈V

∑
v∈b(w)

Nz(w)∑
zw=1

ηv,zw logπv,zw (1)

For the M-step, we maximize Q by taking the derivative
of Q with respect to θ to obtain the updating rule of the
model parameters.

To update Πv,zw , according to the Lagrange multi-
plier method, maximizing Q(θ|θ̂) with the constraint∑Nz(w)

zw=1 πv,zw = 1 yields

∂
(∑Nz(w)

zw=1
ηv,zw logπv,zw − λ(

∑Nz(w)

zw=1
πv,zw − 1)

)
∂πv,zw

= 0.

Then, it can be easily shown that ∀zw πv,zw = ηv,zw .
To update {τzw,w}, setting to zero the derivative for the

first term EI [logP
(s)
w (t + 1, I)] in Eq.(1) does not have a

simple solution. So, within this M-step, we introduce another
level of the EM algorithm.

2) Second level EM: Let Y (s)
v,w(t) denote a latent variable

that indicates whether the activation of a node w at time
step t in the sth cascade is due to w’s parent node v or
not. We further define Ys = {Ys(0), Ys(1) · · ·Ys(Ts)} where
Ys(t) := {Y (s)

v,w(t)} represents the set of latent variables
corresponding to the activations at time step t in the s th

cascade. Then, we compute the posterior probability of
Y

(s)
v,w(t), given as

γv,w,s,t =P (Y (s)
v,w(t+ 1) = 1|w, {ηv,zw}, θ̂)

=

∑Nz(w)

zw=1
ηv,zw τ̂zw,w

P̂
(s)
w (t+ 1)

where τ̂zw,w stands for the current estimate of τzw ,w, and

P̂ (s)
w (t+ 1) = 1−

∏
v∈b(w)∩Cs(w,t)

(1−
Nz(w)∑
zw=1

ηv,zw τ̂zw,w)

The corresponding Q′ function can then be defined as

Q′(θ|θ̂)

=

S∑
s=1

Ts−1∑
t=0

( ∑
w∈Ds(t+1)

∑
v∈b(w)∩Cs(w,t)

Nz(w)∑
zw=1

ηv,zw

(
γv,w,s,tlogτzw,w + (1− γv,w,s,t)log(1− τzw,w)

)

+
∑

w �∈Ds(t+1)

∑
v∈b(w)∩Cs(w,t)

Nz(w)∑
zw=1

ηv,zw log(1− τzw,w)

)

+
∑
w∈V

∑
v∈b(w)

Nz(w)∑
zw=1

ηv,zw logπv,zw

We define T+
w,s as the set of time steps {t} with

reference to the sth cascade satisfying the condition that
node w is activated at time step t + 1 and at least one
of its parents have been activated since L

(s)
w (t + 1).

Meanwhile, T−w,s is the set of time steps {t} where
node w is not activated at t + 1, but at least one of its
parents have been activated since L

(s)
w (t + 1). Moreover,

we define a set of cascades where T +
w,s is not empty as

S+
w = {Ds : ∃v

(
v ∈ b(w) ∧ ∃t

(
v ∈ Cs(w, t) ∧ w ∈ Ds(t+ 1)

))
}

and a set of cascades where T −w,s is not empty as
S−w = {Ds : ∃v

(
v ∈ b(w) ∧ ∃t

(
v ∈ Cs(w, t) ∧ w �∈ Ds(t+ 1)

))
}.

Then ∂Q/∂τzw,w = 0 yields:

τzw,w =
1

N+
zw,w +N−zw,w

∑
s∈S+

w

∑
t∈T+

w,s

∑
v∈Cs(w,t)∩b(w)

ηv,zwγv,w,s,t

N+
zw,w =

∑
s∈S+

w

∑
t∈T+

w,s

∑
v∈Cs(w,t)∩b(w)

ηv,zw

N−zw,w =
∑
s∈S−

w

∑
t∈T−

w,s

∑
v∈Cs(w,t)∩b(w)

ηv,zw .

IV. EXPERIMENTS

For performance comparison, we implement the proposed
pattern-based diffusion model (LCM-IC), the basic IC model
and three variants of a component-based diffusion model
proposed in [8] where the parents are grouped based on
their structural relations to exert influence. The three variants
(COMP(1st), COMP DMod(Max), COMP DEffSz(Max) )
differ in term of implementation details related to a structural
diversity factor and a decay factor, which are not to be
detailed here. Both synthetic and real social and information
network data sets are used in our evaluation. We also
visualize the results obtained based on a meme data set and
illustrate how the co-activation patterns obtained can provide
insights on the dependency of different news media in the
news ecosystem regarding the news being released.

A. Experimental Settings

For all the experiments performed, the initial values of
{τ̂zw,w} are within [0, 0.1] as the diffusion probabilities in
real data are known to be very small (e.g., with a mean
value of 0.04 and standard deviation of 0.07 [19]). And the
initial values of {π̂v,zw} are generated within [0, 1] satisfying∑

zw π̂v,zw = 1. In this work, we obtain the optimal number
of latent patterns per node with best performance using the
cross-validation method.

As the ground-truth is unknown for real data, we use
perplexity as the performance evaluation metric. Perplexity
is widely used for evaluating language models [20], which
calculates the average probability for each word to be
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Figure 2: Model comparison on synthetic data.
generated by the trained model. For our case, the perplexity
over the cascades is defined as

Perplexity =
−∑S

s=1
lnP (Ds)

W
. (2)

where P (Ds) is the probability for the sth cascade to be
generated, and the normalization term W is the number of
activations due to the influence of the corresponding nodes’
parents. A smaller perplexity value indicates the inferred
model to be more accurate, and thus better performance.
Also, we divide the cascades into five folds and obtain the
average performance using cross-validation.

B. Experiments on Synthetic Data

We first generate two scale-free networks with 1, 000
nodes using the snap platform [21], with 5, 000 and 10, 000
edges respectively. For each network, 100 cascades are
generated based on our proposed model with N z(w) = 20.
For model initialization, all the parameters are randomly
assigned under the constraints. Note that the network with
10, 000 edges is denser and thus there are more activa-
tions generated in the cascades available for inferring the
model parameters. We apply our proposed LCM-IC model
and the baseline models COMP DMod(Max) and COM-
P DEffSz(Max) to the synthetic networks. The performance
of the basic IC model is much worse and thus its perfor-
mance is not further reported. According to Figure 2, all the
models perform better for the network with 10, 000 edges
when compared to that with 5, 000 edges as anticipated
due to the increased size of the training set. Also, the
performance of our proposed LCM-IC model can approach
the ground truth and is apparently better than the other
baseline models. The performance ranking among all the
models is consistent for both data sets.

C. Experiments on Real Data

To validate that the proposed model is in fact modeling
what is happening in the real diffusion processes, we apply
the model to three real data sets. We use three real datasets
MemeTracker [22], Digg [23] and Flixster [24] where both
(1) the network structure and (2) information cascades are
available. (i) The MemeTracker dataset covers a period of 9
months from August 1 2008 to April 30 2009. Websites with
news articles and blog posts are modeled as nodes which are

12

13

14

15

P
e
rp

le
x

it
y

COMP(1st)

COMP_DMod(Max)

COMP_DEffSz(M
ax)
LCM−IC

(a) MemeTracker

10

15

20

P
e
rp

le
x

it
y

COMP(1st)

COMP_DMod(Max)

COMP_DEffSz(M
ax)
LCM−IC

(b) Digg

9
10
11
12
13

P
e
rp

le
x

it
y

COMP(1st)

COMP_DMod(Max)

COMP_DEffSz(M
ax)

LCM−IC

(c) Flixster

Figure 3: Performance comparison on three real data sets.
further connected by directed edges. A website A is assumed
to have influence on another site B if a post in website B has
referred to a post in A. Then, there will be a corresponding
edge from A to B. The MemeTracker dataset contains 4
million nodes, 13 million edges, and 71, 568 cascades. (ii)
The Digg dataset records the story voting process under a
directed friendship network of users over one month in 2009.
Users are modeled as nodes. A user A has influence on
a user B if B is A’s follower, modeled as an edge from
user A to user B. The Digg dataset contains 280 thousand
nodes, 2.6 million edges and 3, 553 cascades. Each cascade
is defined based on a particular frequently voted story. (iii)
The Flixster dataset records the movie rating process under
an undirected friendship network of users over a period from
November 2005 to November 2009. Users are modeled as
nodes. In Flixster, if users A and B are friends, there is an
undirected edge for nodes A and B. The Flixster dataset
contains 787 thousand nodes and 5.9 million edges. We
select 5, 318 cascades which correspond to the frequently
rated movies in the dataset.

We apply again the proposed model and the baseline
models to the three data sets. Figure 3 shows the perfor-
mance comparison results. The optimal numbers of latent co-
activation pattern Nz(w) are evaluated by cross-validation
separately for each node. The proposed LCM-IC model
outperforms all the baseline models with a decrease in per-
plexity value of at least 0.54 and 1.66 for the MemeTracker
and Digg datasets respectively. For the Flixster dataset,
the proposed model gives comparable performance to the
baseline models we tested. We find this encouraging given
that the structural information for modeling detailed relation
of parent nodes is not used at all in the proposed model.

D. Run-time

To facilitate run-time comparison, we record the time for
(1) loading the network and the cascades, (2) preprocessing
the cascades and (3) running the EM algorithm, for each of
the models as shown in Figures 4 and 5. The LCM-IC model
takes shorter time in the first two steps for both synthetic
and real data sets as the component-based models require
the component information to be pre-computed. But it takes
more in the third step as the co-activation patterns are to be
inferred at the same time. For the overall run-time, the LCM-
IC model is still more efficient than COMP DEffSz(Max)
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and COMP DMod(Max) when applied to Meme and Digg.
However, the run-time for the EM iterations on Flixster
is relatively long. Also, it is worth mentioning that the
parameter estimation for each node is independent of each
other, and thus can always be easily parallelized.
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Figure 4: Run-time comparison on synthetic data.
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Figure 5: Run-time comparison on three real data sets.

E. Analysis of Dependency among News Media

As a case study, we apply the LCM-IC model to the online
version of the New York Times (NYTimes) and demonstrate
how the latent parent co-activation patterns identified can
help understand the effectiveness of different news sources
on NYTimes. To ease the result interpretation, given w to
be the node corresponding to the NYTimes and v be one of
its parents, we plot the values of p(v|w) as shown in Figure
6 where the effect of the latent patterns are aggregated so as
to compare the overall importance among the news sources
(parent nodes). In addition, we plot the values of p(v|z)
over {v} given different latent patterns so as to identify
the pattern-specific influential news sources, and the values
of p(z|v) to identify the news sources unique to different
co-activation patterns, as shown in Figure 7. In particular,
we look into the details of only five patterns due to the
page limit. Also, before the discussion, it is worth pointing
out that an overall observation is that Boston.com makes
significant contribution to quite some of the patterns even
though it is in fact not as famous as other news sources.
According to [25], Boston Globe was purchased by the
NYTimes during the time period covered by the data set
(the year 2008-2009). We believe that this accounts for its
strong presence as one of the new sources of the NYTimes.
In the sequel, we will exclude the discussion of the effect of
Boston.com in the results. By referring to the plots shown
in Figures 6 and 7, we made the following observations:
O1: The NYTimes is biased towards liberal news

sources. It is well-known that the selective use of news

Table I: Semantic contexts of parent co-activation patterns.

Pattern # semantic context major source(s)
Pattern 1 national news CNN
Pattern 3 big events both liberals and conservatives
Pattern 5 international events IHT
Pattern 6 national political news Washington Post
Pattern 10 national news MSNBC, BBC

sources in America is determined according to the newspa-
pers’ liberal or conservative [26]. The news sources detected
with significant influence to the NYTimes are found to
include MSNBC (msnbc.msn.com), the Washington Post
(washingtonpost.com) and BBC (news.bbc.co.uk). They all
have liberal bias, and so is the NYTimes.
O2: The major news sources can be more reliably

detected by referring to the latent co-activation patterns
inferred. It is interesting to observe that the latent co-
activation patterns inferred (as shown in Figure 7) match
well with the sources preferred by liberals (other than the
New York Times) including the Washington Post (Pattern
6, washingtonpost.com), the International Herald Tribune
(Pattern 5, iht.com), BBC (Pattern 10, news.bbc.co.uk),
CNN (Pattern 1, cnn.com) and MSNBC (Pattern 10, m-
snbc.msn.com), as stated in [26]. To better understand the
importance of considering the co-activation patterns, one
may refer to the plot of p(v|w) in Figure 6. The p(v|w)
values of Free Republic (freerepublic.com), Reuters (reuter-
s.com) and the Huffington Post (huffingtonpost.com) are
found to be comparable to that of CNN. However, they are
not commonly considered as major liberal news sources in
the literature. Based on our experimental results, they are
also not the dominating nodes in the co-activation patterns.
We further examine the operation of the three news media.
Free Republic is an online forum with frequent discussions
among users. According to our results, it in fact does not
characterize a unique co-activation pattern but co-activates
with most of the major news sources, which accounts for the
high values of p(v|w). Reuters is a well-known news agency
for international news. It co-activates specifically with IHT
to cause the activations of the NYTimes. The Huffington
Post is a news aggregator and blog, and it frequently co-
activates with the Washington Post.
O3: Each parent co-activation pattern corresponds to

a specific semantic context of the news sources. Each co-
activation pattern corresponds primarily to a major liberal
news source as the influential source. Also, most of the
influential news sources found in each pattern also appear as
the specific sources of the pattern. Together with the other
less influential sources, they co-activate to define different
parent co-activation patterns. Via careful examination of the
cascades leading to the patterns, we found that each parent
co-activation pattern corresponds to a specific semantic
context as revealed by the associated news sources. Due to
the page limit, we do not include the detailed discussion and
instead list only the semantic contexts in Table I.
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Figure 6: Visualization of the most influential parent nodes identified in the neighborhood of nytimes.com.

V. CONCLUSION

In this paper, we proposed a novel pattern-based infor-
mation diffusion model for social networks where the latent
co-activation patterns of parents for each node are inferred
together with the pattern-based diffusion probabilities using
the maximum likelihood approach. Results show that the
diffusion model proposed in the current study achieves
more accuracy than a number of variants of the IC model.
Also, we have shown how the inferred co-activation patterns
can be used to estimate the dependency among different
online news media in terms of news diffusion. Possible
extensions for future work include at least (1) incorporation
of the cascades’ context to infer context-aware parent co-
activation patterns and diffusion networks, and (2) modeling
the evolution of the latent patterns in the diffusion model.
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Figure 7: Visualization of the patterns identified in the neighborhood of nytimes.com.
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